Advertisement

Journal of Materials Science

, Volume 44, Issue 16, pp 4507–4509 | Cite as

Preparation of γ-alumina ceramic foams employing hydrophilated polyester polyurethane sponges

  • Angela B. Sifontes
  • Marianis Urbina
  • Frank Fajardo
  • Luis MeloEmail author
  • Marta Mediavilla
  • Nereida Carrión
  • Joaquín L. Brito
Letter

Single phase γ-Al2O3 ceramic foams with high surface area (179 m2/g) and porosity (67%) were prepared by the polyurethane sponge replica method from slurries containing γ-Al2O3.

Ceramic foams are highly porous brittle materials with large voids (cells) [1]. These cellular ceramics are special classes of porous materials comprised of cells with size ranging from a few microns to a few millimetres, where the cells can be surrounded by ceramic walls or contain solid material at only cell edges (struts), thus creating an interconnected structure (open cell foam) [1, 2, 3]. Ceramics foams are finding increasing applications as catalytic supports, ceramic membranes, sensors, filters, thermal and acoustic insulators, due to their properties such as low density, low thermal conductivity, high temperature stability, and high resistance to chemical attack [4]. Due to the high calcination temperatures employed in the conventional preparation of alumina foams, α-Al2O3 is always obtained [5]. For...

Keywords

Foam Sponge High Surface Area Alumina Foam Ceramic Foam 

Notes

Acknowledgement

The authors would like to thank CDCH – UCV (PG: 08-00-6075-2005) for supporting this work.

Supplementary material

10853_2009_3693_MOESM1_ESM.doc (135 kb)
Supplementary material 1 (DOC 135 kb)

References

  1. 1.
    Rocha RM, Moura EAB, Bressiani AHA, Bressiani JC (2008) J Mater Sci 43:4466. doi: https://doi.org/10.1007/s10853-008-2654-6 CrossRefGoogle Scholar
  2. 2.
    Wang C, Wang J, Park CB, Kim YW (2007) J Mater Sci 42:2854. doi: https://doi.org/10.1007/s10853-006-0229-y CrossRefGoogle Scholar
  3. 3.
    Yu J, Sun X, Li Q, Li X (2007) J Mater Sci 42:8215. doi: https://doi.org/10.1007/s10853-007-1696-5 CrossRefGoogle Scholar
  4. 4.
    Ávila P, Montes M, Miro EE (2005) Chem Eng J 109:11CrossRefGoogle Scholar
  5. 5.
    Han YS, Li JB, Chen YJ, Wei QM (2002) J Mater Process Technol 128:313CrossRefGoogle Scholar
  6. 6.
    Twigg MV, Richardson JT (2002) Chem Eng Res Des 80:183CrossRefGoogle Scholar
  7. 7.
    Han YS, Li JB, Chen YJ (2003) Mater Res Bull 38:373CrossRefGoogle Scholar
  8. 8.
    Zhang Y, Zhao CY, Liang H, Liu Y (2009) Catal Lett 127:339CrossRefGoogle Scholar
  9. 9.
    Acchar W, Ramalho EG, Souza FBM, Torquato WL, Rodrigues VP, Innocentini MDM (2008) J Mater Sci 43:6556. doi: https://doi.org/10.1007/s10853-008-2585-2 CrossRefGoogle Scholar
  10. 10.
    Xu BJ, Xiao TC, Yan ZF, Sun X, Sloan J, González-Cortés SL, Alshahrani F, Green MLH (2006) Microporous Mesoporous Mater 91:293CrossRefGoogle Scholar
  11. 11.
    Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity, 2nd edn. Academic Press, London, pp 111, 287Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Angela B. Sifontes
    • 1
  • Marianis Urbina
    • 1
  • Frank Fajardo
    • 1
  • Luis Melo
    • 1
    • 3
    Email author
  • Marta Mediavilla
    • 1
  • Nereida Carrión
    • 2
  • Joaquín L. Brito
    • 3
  1. 1.Facultad de IngenieríaUniversidad Central de VenezuelaCaracasVenezuela
  2. 2.Centro de Química Analítica, Facultad de CienciasUniversidad Central de VenezuelaCaracasVenezuela
  3. 3.Centro de QuímicaInstituto Venezolano de Investigaciones CientíficasCaracasVenezuela

Personalised recommendations