Journal of Materials Science

, Volume 44, Issue 17, pp 4546–4552 | Cite as

Nanostructure formation in the surface layer of metals under influence of high-power electric current pulse

  • A. VinogradovEmail author
  • A. Mozgovoi
  • S. Lazarev
  • S. Gornostai-Polskii
  • R. Okumura
  • S. Hashimoto


The possibility to tailor the microstructure of metals is explored utilising a skin-effect for surface treatment. The theoretical simulation of the electric and magnetic fields in a metallic cylinder shows that melting followed by rapid quenching can occur in a skin layer of 5–10-μm thickness if the amplitude of a single electric pulse of several nanoseconds duration is of the order of hundreds kiloamperes. The experiments using the SUS304 stainless steel show that besides a thin amorphous layer, a specific nano-twin structure can form at the near-surface region. The appearance of nano-twins is explained considering the stress components arising at the surface layer and in the bulk of the specimen during shock wave propagation caused by temperature gradients and the Lorentz force. It is shown that the high stress amplitudes can arise locally, furnishing the required conditions for twin nucleation and resulting in intensive plastic deformation of the sub-surface layer.


Severe Plastic Deformation Rapid Quenching Mechanical Twin Shock Wave Loading Twin Structure 


  1. 1.
    Gleiter H (1989) Progr Mater Sci 33:223CrossRefGoogle Scholar
  2. 2.
    Beck H, Guntherodt H-J (eds) (1981) Glassy metals (topics in applied physics), vol 46. Springer, GermanyGoogle Scholar
  3. 3.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Progr Mater Sci 45:103CrossRefGoogle Scholar
  4. 4.
    Vinogradov A, Lazarev SG, Mozgovoi AL, Hashimoto S (2005) Philos Mag Lett 85:575Google Scholar
  5. 5.
    Vinogradov A, Lazarev SG, Mozgovoi AL, Gornostai-Polskii SA, Okumura R, Hashimoto S (2007) J Appl Phys 101:033510–033510-7CrossRefGoogle Scholar
  6. 6.
    Landau LD, Lifshitz EM (1984) Electrodynamics of continuous media, vol 8. Pergamon, Oxford, UKGoogle Scholar
  7. 7.
    Voronin VV, Tananakin VA, Pavlov SS, Tsiberev VP, Voronov SL (1977) In: Proceedings 11th IEEE international pulsed power conference, Baltimore, Maryland, USA, p 1566Google Scholar
  8. 8.
    Jones AR (1981) J Mater Sci 16:1374. doi: CrossRefGoogle Scholar
  9. 9.
    Nartia N, Takamura J (1992) In: Nabarro FRN (ed) Dislocations in solids, vol 9. Elsevier, AmsterdamGoogle Scholar
  10. 10.
    Rigsbee JM, Benson RB (1977) J Mater Sci 12:406–409. doi: CrossRefGoogle Scholar
  11. 11.
    Friedel J (1964) Dislocations. Pergamon Press, Oxford, UKCrossRefGoogle Scholar
  12. 12.
    Gerland M, Presles HN, Mendez J, Dufour JP (1993) J Mater Sci 28:1551. doi: CrossRefGoogle Scholar
  13. 13.
    Firrao D, Matteis P, Scavino G, Ubertalli G, Ienco MG, Pellati G, Piccardo P, Pinasco MR, Stagno E, Montanari R, Tata ME, Brandimarte G, Petralia S (2006) Mat Sci Eng A 424:23CrossRefGoogle Scholar
  14. 14.
    Liu G, Wang SC, Lou XF, Lu J, Lu K (2001) Scripta Mater 44:1791CrossRefGoogle Scholar
  15. 15.
    Zhang HW, Hei ZK, Liu G, Lu J, Lu K (2003) Acta Mater 51:1871CrossRefGoogle Scholar
  16. 16.
    Bakalinskaya ND, Zubov VI, Nadezhdin GN, Petrov YuN, Svechnikov VI, Stepanov GV (1988) J Strength Mater 20:1205CrossRefGoogle Scholar
  17. 17.
    Gumbsch P, Gao H (1999) Science 283:965CrossRefGoogle Scholar
  18. 18.
    Hirth JP, Lotte J (1982) Theory of dislocations. Wiley, New YorkGoogle Scholar
  19. 19.
    Murr LE (1975) In: Herndan VA (ed) Interfacial phenomena in metals and alloys. Techbooks, HerndanGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • A. Vinogradov
    • 1
    Email author
  • A. Mozgovoi
    • 2
  • S. Lazarev
    • 2
  • S. Gornostai-Polskii
    • 2
  • R. Okumura
    • 2
    • 3
  • S. Hashimoto
    • 1
  1. 1.Osaka City UniversityOsakaJapan
  2. 2.Institute of Experimental PhysicsSarovRussia
  3. 3.Materials Engineering DepartmentDenso Corp.KariyaJapan

Personalised recommendations