Journal of Materials Science

, Volume 44, Issue 16, pp 4503–4506 | Cite as

Comment on “study on electrorheological properties of novel polymer-Ce4+ complex”

  • Seung Woo Ko
  • Hyoung Jin ChoiEmail author

Recently, Song and Lin [1] reported electrorheological (ER) fluids based on the synthesized bithiazole ring and p-aminobenzoic acid containing new polymer system, and CeCl4 mixed polymer-Ce4+ complex. Two different ER fluids systems were prepared and their electrical properties were compared each other. It was observed that the cerium ion (Ce4+) enhanced ER activity, in which the yield stresses increased compared with pure polymer based ER fluid under an applied electric field.

The typical ER fluid implies a suspension of semiconducting or dielectric solid particles in non-conducting liquid media [2, 3, 4, 5, 6, 7], exhibiting reversible and drastic changes in their rheological properties which include a large increase in apparent viscosity and the formation of reversible suspension microstructures under an applied electric field [8, 9] along with its magnetically analogous magnetorheological suspensions under an external magnetic field [10, 11, 12]. The reversible behavior on the...


Electric Field Strength Conduction Model Pure Polymer Polarization Model Applied Electric Field Strength 



This study was supported by Inha University (2009).


  1. 1.
    Song X, Lin Y (2006) J Mater Sci 41:2055. doi: CrossRefGoogle Scholar
  2. 2.
    Hong CH, Choi HJ, Kim JH (2008) J Mater Sci 43:5702. doi: CrossRefGoogle Scholar
  3. 3.
    Oz K, Yavuz M, Yilmaz H, Unal HI, Sari B (2008) J Mater Sci 43:1451. doi: CrossRefGoogle Scholar
  4. 4.
    Li GF, Wang ZQ, Wang NH (2007) J Mater Sci 42:8242. doi: CrossRefGoogle Scholar
  5. 5.
    Yoon DJ, Kim YD (2007) J Mater Sci 42:5534. doi: CrossRefGoogle Scholar
  6. 6.
    Shang YL, Jia YL, Liao FH, Li JR, Li MX, Wang J, Zhang SH (2007) J Mater Sci 42:2586. doi: CrossRefGoogle Scholar
  7. 7.
    Yavuz M, Cabuk M (2007) J Mater Sci 42:2132. doi: CrossRefGoogle Scholar
  8. 8.
    Choi HJ, Cho MS, Kim JW, Kim CA, Jhon MS (2001) Appl Phys Lett 78:3806CrossRefGoogle Scholar
  9. 9.
    Yin J, Zhao X, Xia X, Xiang L, Qiao Y (2008) Polymer 49:4413CrossRefGoogle Scholar
  10. 10.
    Bica I, Choi HJ (2008) Int J Modern Phys B 22:5041CrossRefGoogle Scholar
  11. 11.
    Fang FF, Choi HJ (2008) J Appl Phys 103:07A301CrossRefGoogle Scholar
  12. 12.
    Kim JH, Fang FF, Choi HJ, Seo Y (2008) Mater Lett 62:2897CrossRefGoogle Scholar
  13. 13.
    Boissy C, Atten P, Foulc JN (1996) J Intell Mater Sys Struct 7:599CrossRefGoogle Scholar
  14. 14.
    Lee KH, Park BJ, Choi HJ (2006) Eur Phys J E21:387Google Scholar
  15. 15.
    Kim DH, Kim YD (2007) J Ind Eng Chem 13:879Google Scholar
  16. 16.
    Stenicka M, Pavlinek V, Saha P, Blinova NV, Stejskal J, Quadrat O (2008) Colloid Polym Sci 286:1404CrossRefGoogle Scholar
  17. 17.
    Duan X, Chen H, He Y, Luo W (2000) J Phys D: Appl Phys B 13:696CrossRefGoogle Scholar
  18. 18.
    Sim IS, Kim JW, Choi HJ, Kim CA, Jhon MS (2001) Chem Mater 13:1243CrossRefGoogle Scholar
  19. 19.
    Kim SG, Lim JY, Sung JH, Choi HJ, Seo Y (2007) Polymer 48:6622CrossRefGoogle Scholar
  20. 20.
    Choi HJ, Lee IS, Sung JH, Park BJ, Jhon MS (2006) J Colloid Interface Sci 295:291CrossRefGoogle Scholar
  21. 21.
    Choi HJ, Jhon MS (2009) Soft Matter 5:1562CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Polymer Science and EngineeringInha UniversityIncheonKorea

Personalised recommendations