Advertisement

Journal of Materials Science

, Volume 44, Issue 19, pp 5420–5427 | Cite as

Relaxor behavior of (1 − x)BaTiO3x(Bi3/4Na1/4)(Mg1/4Ti3/4)O3 (0.2 ≤ x ≤ 0.9) ferroelectric ceramic

  • Liying WuEmail author
  • Xiaoli Wang
  • Jimmy H. Wang
  • Ruyan Guo
  • Amar S. Bhalla
Ferroelectrics

Abstract

The (1 − x)BaTiO3x(Bi3/4Na1/4)(Mg1/4Ti3/4)O3 (0.2 ≤ x ≤ 0.9) ceramics were prepared by conventional solid-state reaction route. Their dielectric properties were found to follow a modified Curie–Weiss law and an empirical Lorenz-type relation in respective temperature regions. Their dielectric relaxation times fit well with the Vogel–Fulcher relation for x = 0.2, 0.3, and 0.4. For x = 0.5, 0.6, 0.7, and 0.8, however, the fitting curves of Vogel–Fulcher relation showed certain deviation from the experimental data. Based on the theoretical treatment of Landau–Ginsburg–Devonshire theory, an approximate treatment of the E-field dependence of the permittivity was adopted and found to describe well the field dependence of the permittivity for x = 0.3 at temperatures equal to and below Tm (temperature of maximum dielectric permittivity). A combined Langevin-type expression used in the present work appears to give a good account for the field dependence of the permittivity, assuming polar regions are of a statistical cluster size. For polar clusters of linear dimension L ~ 4–8 nm for instance, the fitted values of polarization are in the range of P ~ 6.2–9.8 μC/cm2.

Keywords

BaTiO3 Barium Titanate Relaxor Behavior Barium Titanate Ferroelectric Relaxors 

Notes

Acknowledgement

This work has been supported by US National Science Foundation under grant number NSF 0833000 and by US Office of Naval Research under grant number N00014-08-1-0854. One of the authors acknowledges the support of National Natural Science Foundation of China (Project 50772087) and scholarship from China Scholar Council through the program of National study-abroad project for postgraduates of high level universities.

References

  1. 1.
    Bokov AA, Ye Z-G (2006) J Mater Sci 41:31. doi: https://doi.org/10.1007/s10853-005-5915-7 CrossRefGoogle Scholar
  2. 2.
    Bokov AA, Ye ZG (2002) Phys Rev B 66:064103CrossRefGoogle Scholar
  3. 3.
    Cross LE (1987) Ferroelectrics 76:241CrossRefGoogle Scholar
  4. 4.
    Maiti T, Guo R, Bhalla AS (2006) J Appl Phys 100:114109CrossRefGoogle Scholar
  5. 5.
    Maiti T, Guo R, Bhalla AS (2007) Appl Phys Lett 90:182901CrossRefGoogle Scholar
  6. 6.
    Maiti T, Guo R, Bhalla AS (2006) Appl Phys Lett 89:122909CrossRefGoogle Scholar
  7. 7.
    Tiwari VS, Singh N, Pandey D (1995) J Phys Condens Matter 7:1441CrossRefGoogle Scholar
  8. 8.
    Singh N, Pandey D (1996) J Phys Condens Matter 8:4269CrossRefGoogle Scholar
  9. 9.
    Singh N, Singh AP, Parsad CD, Pandey D (1996) J Phys Condens Matter 8:7813CrossRefGoogle Scholar
  10. 10.
    Wang X, Cao W (2007) J Eur Ceram Soc 27:2481CrossRefGoogle Scholar
  11. 11.
    Wu L, Wang X, Wang JH, Guo R, Bhalla AS (2009) Ferroelectr Lett 36:28CrossRefGoogle Scholar
  12. 12.
    Vogel H (1921) Phys Z 22:645Google Scholar
  13. 13.
    Fulcher GS (1925) J Am Ceram Soc 8:339CrossRefGoogle Scholar
  14. 14.
    Tholence JL (1980) Solid State Commun 35:113CrossRefGoogle Scholar
  15. 15.
    Johnson KM (1961) J Appl Phys 33:2826CrossRefGoogle Scholar
  16. 16.
    Drougard ME, Landauer R, Young DR (1955) Phys Rev 98:1010CrossRefGoogle Scholar
  17. 17.
    Stern E, Lurio A (1961) Phys Rev 123:117CrossRefGoogle Scholar
  18. 18.
    Rupprecht G, Bell RO (1964) Phys Rev 135:A748CrossRefGoogle Scholar
  19. 19.
    Langevin P (1905) J Phys 4:678Google Scholar
  20. 20.
    Uchino K, Nomura S (1982) Ferroelectrics 44:55CrossRefGoogle Scholar
  21. 21.
    Bokov AA, Ye ZG (2000) Solid State Commun 116:105CrossRefGoogle Scholar
  22. 22.
    Bokov AA, Bing YH, Chen W, Ye ZG, Bogatina SA, Raeviski IP, Raevskaya SI, Sahkar EV (2003) Phys Rev B 68:052102CrossRefGoogle Scholar
  23. 23.
    Viehland D, Jang S, Cross LE, Wittig M (1991) Phil Mag B 64:335CrossRefGoogle Scholar
  24. 24.
    Lei C, Bohov AA, Ye Z-G (2007) J Appl Phys 101:084105CrossRefGoogle Scholar
  25. 25.
    Samara GA (2003) J Phys Condens Matter 15:367CrossRefGoogle Scholar
  26. 26.
    Matit T, Guo R, Bhalla AS (2008) J Am Ceram Soc 91(6):1769CrossRefGoogle Scholar
  27. 27.
    Dixit A, Majumder AB, Katiyar RS, Bhalla AS (2006) J Mater Sci 41:87. doi: https://doi.org/10.1007/s10853-005-5929-1 CrossRefGoogle Scholar
  28. 28.
    Burfoot JC, Taylor GW (1979) Polar dielectrics and their applications. Macmillan Press Ltd, LondonGoogle Scholar
  29. 29.
    Lines ME, Glass AM (1977) Principle and application of ferroelectrics and related materials. Oxford University Press, OxfordGoogle Scholar
  30. 30.
    Devonshire AF (1949) Phil Mag 40:1040CrossRefGoogle Scholar
  31. 31.
    Lawless WN (1977) Phys Rev B 16:433CrossRefGoogle Scholar
  32. 32.
    Bianchi U, Dec J, Kleemann W, Bednorz JG (1995) Phys Rev B 51:8737CrossRefGoogle Scholar
  33. 33.
    Chaves MR, Almeida A, Maglione M, Ribeiro JL (1996) Phys Status Solid B 197:503CrossRefGoogle Scholar
  34. 34.
    Ang C, Cross LE, Guo R, Bhalla AS (2000) Appl Phys Lett 77:732CrossRefGoogle Scholar
  35. 35.
    Bell AJ (1993) J Phys Condens Matter 5:8773CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Liying Wu
    • 1
    Email author
  • Xiaoli Wang
    • 1
  • Jimmy H. Wang
    • 2
  • Ruyan Guo
    • 2
  • Amar S. Bhalla
    • 2
  1. 1.Department of Material PhysicsXi’an Jiaotong UniversityXi’anChina
  2. 2.Department of Electrical and Computer EngineeringUniversity of Texas at San AntonioSan AntonioUSA

Personalised recommendations