Nucleation and growth mechanism of apatite on a bioactive and degradable ceramic/polymer composite with a thick polymer layer
- 138 Downloads
- 4 Citations
Abstract
Nucleation and growth mechanism of apatite on a bioactive and degradable PLLA/SiO2–CaO composite with a thick PLLA surface layer were investigated compared to that on a bioactive but non-degradable polyurethane (PU)/SiO2–CaO composite with a thick PU surface layer. The bioactive SiO2–CaO particles were made by a sol–gel method from tetraethyl orthosilicate and calcium nitrate tetrahydrate under acidic condition followed by heat treatment at 600 °C for 2 h. The PLLA/SiO2–CaO and PU/SiO2–CaO composites were then prepared by a solvent casting method which resulted in thick PLLA and PU surface layers, respectively, due to precipitation of SiO2–CaO particles during the casting process. Two composites were exposed to SBF for 1 week and this exposure led to form uniform and complete apatite coating layer on the PLLA/SiO2–CaO composite but not on the PU/SiO2-CaO composite. These results were interpreted in terms of the degradability of the polymers. A practical implication of the results is that a post-surface grinding or cutting processes to expose bioactive ceramics to the surface of a composite with a thick biodegradable polymer layer is not required for providing apatite forming ability, which has been considered as one of the pragmatic obstacles for the application as a bone grafting material.
Keywords
Apatite PLLA Surface Crack Bioactive Glass Composite SurfaceNotes
Acknowledgement
This work was supported by the Nano Bio R&D Program (Platform technologies for organ/tissue regeneration (Regenomics), Grant No. M0528010001-06N2801-00110) of the Korea Science & Engineering Foundation.
References
- 1.Hench LL, Splinter RJ, Allen WC, Greenlee TK Jr (1972) J Biomed Mater Res Symp 2:117Google Scholar
- 2.Kokubo T, Shigematsu M, Nagashima Y, Tashiro T, Nakamura T, Yamamuro T, Higashi S (1982) Bull Inst Chem Res, Kyoto Univ 60:260Google Scholar
- 3.Clupper DC, Hench LL, Mecholsky JJ (2004) J Eur Ceram Soc 24(10–11):2929CrossRefGoogle Scholar
- 4.Rawlings RD (1993) Clin Mater 14(2):155CrossRefGoogle Scholar
- 5.Bonfield W, Grynpas MD, Tully AE, Bowman J, Abram J (1981) Biomaterials 2(3):185CrossRefGoogle Scholar
- 6.Taguchi Y, Yamamuro T, Nakamura T, Nishimura N, Kokubo T, Takahata E, Yoshihara S (1990) J Appl Biomater 1(3):217CrossRefGoogle Scholar
- 7.Elgendy HM, Norman ME, Keaton AR, Laurencin CT (1993) Biomaterials 14(4):263CrossRefGoogle Scholar
- 8.Kawanabe K, Tamura J, Yamamuro T, Nakamura T, Kokubo T, Yoshihara S (1993) J Appl Biomater 4(2):135CrossRefGoogle Scholar
- 9.Jansen JA, de Ruijter JE, Janssen PTM, Paquay YGCJ (1995) Biomaterials 16(11):819CrossRefGoogle Scholar
- 10.Piattelli A, Franco M, Ferronato G, Santello MT, Martinetti R, Scarano A (1997) Biomaterials 18(8):629CrossRefGoogle Scholar
- 11.Du FZC C, Zhu XD, de Groot K (1999) J Biomed Mater Res 44(4): 407CrossRefGoogle Scholar
- 12.Kikuchi M, Tanaka J, Koyama Y, Takakuda K (1999) J Biomed Mater Res 48(2):108CrossRefGoogle Scholar
- 13.Peter SJ, Lu L, Kim DJ, Mikos AG (2000) Biomaterials 21(12):1207CrossRefGoogle Scholar
- 14.Bleach NC, Nazhat SN, Tanner KE, Kellomäki M, Tömälä P (2002) Biomaterials 23(7):1579CrossRefGoogle Scholar
- 15.Rhee S-H, Choi JY, Kim HM (2002) Biomaterials 23(24):4915CrossRefGoogle Scholar
- 16.Kamitakahara M, Kawashita M, Miyata N, Kokubo T, Nakamura T (2002) J Mater Sci: Mater Med 13(11):1015Google Scholar
- 17.Rhee S-H, Lee Y-K, Lim B-S, Yoo JJ, Kim HJ (2004) Biomacromolecules 5(4):1575CrossRefGoogle Scholar
- 18.Wei G, Ma PX (2004) Biomaterials 25(19):4749CrossRefGoogle Scholar
- 19.Kim S-S, Sun Park M, Jeon O, Yong Choi C, Kim B-S (2006) Biomaterials 27(8):1399CrossRefGoogle Scholar
- 20.Beatty MW, Swartz ML, Moore BK, Phillips RW, Roberts TA (1998) J Biomed Mater Res 40(1):12CrossRefGoogle Scholar
- 21.Okada Y, Kobayashi M, Neo M, Kokubo T, Nakamura T (2001) J Biomed Mater Res 57A(1):101CrossRefGoogle Scholar
- 22.Väkiparta M, Forsback A-P, Lassila LV, Jokinen M, Yli-Urpo AUO, Vallittu PK (2005) J Mater Sci: Mater Med 16(9):873Google Scholar
- 23.Kim IY, Kawachi G, Kikuta K, Cho SB, Kamitakahara M, Ohtsuki C (2008) J Eur Ceram Soc 28(8):1595CrossRefGoogle Scholar
- 24.Kokubo T, Kushitani H, Sakka S, Kitusgi T, Yamamuro T (1990) J Biomed Mater Res 24:721CrossRefGoogle Scholar
- 25.Nam J, Ray S, Okamoto M (2003) Macromolecules 23(2):634Google Scholar
- 26.Griffith LG (2000) Acta Mater 48:263CrossRefGoogle Scholar
- 27.Kokubo T, Kushitani H, Ohtsuki C, Sakka S, Yamamuro T (1992) J Mater Sci: Mater Med 3:79Google Scholar
- 28.Ohtsuki C, Kokubo T, Yamamuro T (1992) J Non-Cryst Solids 143:84CrossRefGoogle Scholar
- 29.Abe Y, Kokubo T, Yamamuro T (1990) J Mater Sci: Mater Med 1:233Google Scholar
- 30.Neuman WF, Neuman MW (1958) The chemical dynamics of bone mineral. University of Chicago, ChicagoGoogle Scholar