Journal of Materials Science

, Volume 44, Issue 24, pp 6546–6552 | Cite as

Synthesis of mesoporous aluminophosphates impregnated with metals and their application in gas oil desulphurization by adsorption

  • V. I. ÁguedaEmail author
  • J. L. Sotelo
  • M. A. Uguina
  • R. Rodríguez
Mesostructured Materials


Mesoporous materials based on aluminophosphates and silicates have been synthesised and impregnated with different loadings of transition metals such as Ag, Cu and Ni. These materials have been characterised and tested as selective adsorbents for the desulphurization of light cycle oil (LCO) by liquid adsorption. The polarity of the adsorbent matrix showed a positive effect on desulphurization, leading the impregnated aluminophosphates to higher adsorption capacities than the silicates. Among the transition metals tested, Ag-impregnated materials showed the best results followed by Cu and Ni. The aluminophosphate synthesised using pluronic F-127 block copolymer impregnated with a 5% of Ag (MFAP-5Ag) presented the best adsorption results with a maximum adsorption capacity of 11.36 mg S/g of adsorbent (equilibrium experiments), and breakthrough and saturation capacities of 4.25 mgS/g and 7.06 mgS/g, respectively (dynamic experiments).


Adsorption Capacity Mesoporous Material Maximum Adsorption Capacity High Adsorption Capacity Cooperative Adsorption 

List of symbols


Sulphur concentration, ppmw


Fractional bed utilisation; defined as qbr/qsat


Equilibrium constant, ppmn; parameter defined in Eq. 1


Langmuir-Freundlich exponent; parameter defined in Eq. 1


Adsorption capacity, mg g−1


Adsorption capacity from the isotherm at a given concentration, mg g−1


Maximum adsorption capacity, mg g−1; parameter defined in Eq. 1


Degree of desulphurization, %


Time, min

Subscripts and superscripts




Breakthrough time




Saturation time



Financial support from E.U. and Comunidad Autónoma de Madrid through the projects FEDER European Project 2FD1997-1873 and CAM 07 M/0056/2001 is gratefully acknowledged.


  1. 1.
    Hernández-Maldonado AJ, Yang RT (2004) AIChE J 50:791CrossRefGoogle Scholar
  2. 2.
    Babich IV, Moulijn JA (2003) Fuel 82:607CrossRefGoogle Scholar
  3. 3.
    Ma X, Sun L, Song C (2002) Catal Today 77:107CrossRefGoogle Scholar
  4. 4.
    Zhang JC, Song LF, Hu JY, Ong SL, Ng WJ, Lee LY, Wang YH, Zhao JG, Ma RY (2005) Energy Convers Manag 46:1CrossRefGoogle Scholar
  5. 5.
    Yang RT, Hernández-Maldonado AJ, Yang FH (2003) Science 301:79CrossRefGoogle Scholar
  6. 6.
    Hernández-Maldonado AJ, Yang RT (2003) Ind Eng Chem Res 42:123CrossRefGoogle Scholar
  7. 7.
    Yang RT, Takahashi A, Yang FH (2001) Ind Eng Chem Res 40:6236CrossRefGoogle Scholar
  8. 8.
    McKinley SG, Angelici RJ (2003) Chem Commun 2620Google Scholar
  9. 9.
    Sotelo JL, Uguina MA, Águeda VI, Serrano J (2005) Stud Surf Sci Catal 158B:1089CrossRefGoogle Scholar
  10. 10.
    Zhao E, Feng J, Huo Q, Melosh N, Fredrickson GH, Chemelka BF, Stucky GD (1998) Science 279:548CrossRefGoogle Scholar
  11. 11.
    Tian B, Liu X, Tu B, Yu C, Fan J, Wang L, Xie S, Stucky GD, Zhao D (2003) Nat Mater 2:159CrossRefGoogle Scholar
  12. 12.
    Wang L, Tian B, Fan J, Liu X, Yang H, Yu C, Tu B, Zhao D (2004) Microporous Mesoporous Mater 67:123CrossRefGoogle Scholar
  13. 13.
    Sotelo JL, Uguina MA, Águeda VI (2002) XXVII Reunión Ibérica de adsorción 151Google Scholar
  14. 14.
    Giles CH, MacEwan TH, Nakhwa SN, Smith D (1960) J Chem Soc 3973Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • V. I. Águeda
    • 1
    Email author
  • J. L. Sotelo
    • 1
  • M. A. Uguina
    • 1
  • R. Rodríguez
    • 1
  1. 1.Chemical Engineering Department, Faculty of ChemistryComplutense University of MadridMadridSpain

Personalised recommendations