Advertisement

Journal of Materials Science

, Volume 44, Issue 19, pp 5080–5094 | Cite as

Review of magnetoelectric perovskite–spinel self-assembled nano-composite thin films

  • Li YanEmail author
  • Yaodong Yang
  • Zhiguang Wang
  • Zengping Xing
  • Jiefang Li
  • D. Viehland
Ferroelectrics

Abstract

Two-phase multiferroic nano-composite thin films have been a topic of research interests in the last few years. This is because of their expected magnetoelectric coupling, as well as potential applications. This review focuses on recent findings in self-assembled nano-structure composite thin films, and various efforts to realize and improve their magnetoelectricity. Topics include: (i) nano-pillar and maze structures, and their formation mechanisms, and a nano-belt structure oriented in-plane found by our research group; (ii) the ferroelectric properties of composite thin films, and how they can be enhanced by epitaxial engineering; (iii) a magnetic anisotropy that is induced by constraint stress, and by the nano-structures of the ferromagnetic phase; and (iv) a magnetoelectric coupling that was first observed via a change in magnetization near the Curie temperature of the ferroelectric phase, a magnetization switching assisted by electric field, and recently direct measurements using a magnetic cantilever method yielding values of 18 mV/cm Oe in BiFeO3–CoFe2O4.

Keywords

BiFeO3 CoFe2O4 Morphotropic Phase Boundary Constraint Stress Composite Thin Film 

Notes

Acknowledgements

We gratefully acknowledge financial support from the U.S. Department of Energy under Contract No. DE.-AC02-98CH10886, the Office of the Air-Force Office of Scientific Research under FA 9550-06-1-0410, and the National Science Foundation under DMR-0757502.

References

  1. 1.
    Schmid H (1994) Ferroelectrics 162:317Google Scholar
  2. 2.
    Rado GT, Folen VJ (1961) Phys Rev Lett 7(8):310Google Scholar
  3. 3.
    Folen VJ, Rado GT, Stalder EW (1961) Phys Rev Lett 6:607Google Scholar
  4. 4.
    Wang J, Zheng H, Nagarajan V, Liu B, Ogale SB, Viehland D, Venugopalan V, Schlom DG, Wuttig M, Ramesh R, Neaton JB, Waghmare UV, Hill NA, Rabe KM (2003) Science 299:1719Google Scholar
  5. 5.
    Zheng H, Wang J, Lofland SE, Ma Z, Mohaddes-Ardabili L, Zhao T, Salamanca-Riba L, Shinde SR, Ogale SB, Bai F, Viehland D, Jia Y, Gchlom DG, Wuttig M, Roytburd A, Ramesh R (2004) Science 303:661Google Scholar
  6. 6.
    Wan JG, Wang XW, Wu YJ, Zeng M, Wang Y, Jiang H, Zhou WQ, Wang GH, Liu J-M (2005) Appl Phys Lett 86:122501Google Scholar
  7. 7.
    Zhong XL, Wang JB, Liao M, Huang GJ, Xie SH, Zhou YC, Qiao Y, He JP (2007) Appl Phys Lett 90:152903Google Scholar
  8. 8.
    Liu M, Li X, Lou J, Zheng S, Du K, Sun NX (2007) J Appl Phys 102:083911Google Scholar
  9. 9.
    Ryu H, Murugavel P, Lee JH, Chae SC, Noh TW, Oh YS, Kim HJ, Kim KH, Jang JH, Kim M (2006) Appl Phys Lett 89:102907Google Scholar
  10. 10.
    Ren S, Wuttig M (2008) Appl Phys Lett 92:083502Google Scholar
  11. 11.
    Murakami M, Chang K-S, Aronova MA, Lin C-L, Yu MH, Hattrick Simpers J, Wuttig M, Takeuchi I, Gao C, Hu B, Lofland SE, Knauss LA, Bendersky LA (2005) Appl Phys Lett 87:112901Google Scholar
  12. 12.
    Chang KS, Aronova MA, Lin CL, Murakami M, Yu MH, Hattrick-Simpers J, Famodu OO, Lee SY, Ramesh R, Wuttig M, Takeuchi I, Gao C, Bendersky LA (2004) Appl Phys Lett 84:3091Google Scholar
  13. 13.
    Deng C, Zhang Y, Ma J, Lin Y, Nan CW (2007) J Appl Phys 102:074114Google Scholar
  14. 14.
    Ryu S, Park JH, Jang HM (2007) Appl Phys Lett 91:142910Google Scholar
  15. 15.
    Ziese M, Bollero A, Panagiotopoulos I, Moutis N (2006) Appl Phys Lett 88:212502Google Scholar
  16. 16.
    He HC, Wang J, Zhou J-P, Nan C-W (2007) Adv Funct Mater 17:1333Google Scholar
  17. 17.
    He HC, Zhou JP, Wang J, Nan C-W (2006) Appl Phys Lett 89:052904Google Scholar
  18. 18.
    Zheng H, Zhan Q, Zavaliche F, Sherburne M, Straub F, Cruz MO, Chen LQ, Dahmen U, Ramesh R (2006) Nano Lett 6:1401Google Scholar
  19. 19.
    Zheng H, Straub F, Zhan Q, Yang PL, Hsieh WK, Zavaliche F, Chu YH, Dahmen U, Ramesh R (2006) Adv Mater 18:2747Google Scholar
  20. 20.
    Zavaliche F, Zheng H, Mohaddes-Ardabili L, Yang SY, Zhan Q, Shafer P, Reilly E, Chopdekar R, Jia Y, Wright P, Schlom DG, Suzuki Y, Ramesh R (2005) Nano Lett 5:1793Google Scholar
  21. 21.
    Zavaliche F, Zhao T, Zheng H, Straub F, Cruz MP, Yang P-L, Hao D, Ramesh R (2007) Nano Lett 7(6):1586Google Scholar
  22. 22.
    Levin I, Li J, Slutsker J, Roytburd AL (2006) Adv Mater 18:2044Google Scholar
  23. 23.
    Slutsker J, Tan Z, Roytburd AL, Levin I (2007) J Mater Res 22(8):2087Google Scholar
  24. 24.
    Zheng H, Wang J, Mohaddes-Ardabili L, Wuttig M, Salamanca-Riba L, Schlom DG, Ramesh R (2004) Appl Phys Lett 85:2035Google Scholar
  25. 25.
    Zhan Q, Yu R, Crane SP, Zheng H, Kisielowski C, Ramesh R (2006) Appl Phys Lett 89:172902Google Scholar
  26. 26.
    Li J, Levin I, Slutsker J, Provenzano V, Schenck PK, Ramesh R, Ouyang J, Roytburd AL (2005) Appl Phys Lett 87:072909Google Scholar
  27. 27.
    Levin I, Slutsker J, Li J, Tan Z, Roytburd AL (2007) Appl Phys Lett 91:062912Google Scholar
  28. 28.
    Ren S, Briber RM, Wuttig M (2008) Appl Phys Lett 93:173507Google Scholar
  29. 29.
    Muralidharan R, Dix N, Skumryev V, Varela M, Sanchez F, Fontcuberta J (2008) J Appl Phys 103:07E301Google Scholar
  30. 30.
    Zhang JX, Dai JY, Lu W, Chan HLW, Wu B, Li DX (2008) J Phys D Appl Phys 41:235405Google Scholar
  31. 31.
    Artemev A, Slutsker J, Roytburd AL (2005) Acta Mater 53:3425Google Scholar
  32. 32.
    Slutsker J, Levin I, Li J, Artemev A, Roytburd AL (2006) Phys Rev B 73:184127Google Scholar
  33. 33.
    Slutsker J, Roytburd A (2006) Phase Transit 79:1083Google Scholar
  34. 34.
    Yanina SV, Carter CB (2002) Mater Res Soc Symp 620:M9.4.1Google Scholar
  35. 35.
    Yan L, Li JF, Viehland D (2009) Philos Mag. doi: https://doi.org/10.1080/14786430902967702 Google Scholar
  36. 36.
    Yan L, Bai FM, Li JF, Viehland D (2009) J Am Ceram Soc 92:17Google Scholar
  37. 37.
    Yan L, Xing Z, Wang Z, Wang T, Lei G, Li J, Viehland D (2009) Appl Phys Lett 94:192902Google Scholar
  38. 38.
    Speck JS, Selfert A, Pompe W, Ramesh R (1994) J Appl Phys 76:477Google Scholar
  39. 39.
    Lee J, Park G, Park C, Kim H (2006) Appl Phys Lett 88:072908Google Scholar
  40. 40.
    Hsu F, Leu C, Lu Y, Ho S, Hu C (2009) J Am Ceram Soc 92:389Google Scholar
  41. 41.
    Matthews JW, Blakeslee AE (1974) J Cryst Growth 27:118Google Scholar
  42. 42.
    People R, Bean JC (1985) Appl Phys Lett 47:322Google Scholar
  43. 43.
    Chen YB, Sun HP, Katz MB, Pan XQ, Choi KJ, Jang HW, Eom CB (2007) Appl Phys Lett 91:252906Google Scholar
  44. 44.
    Huang GF, Berger S (2003) J Appl Phys 93:2855Google Scholar
  45. 45.
    Alpay SP, Misirlioglu IB, Sharma A, Ban XG (2004) J Appl Phys 95:8118Google Scholar
  46. 46.
    Trithaveesak O, Schubert J, Buchal Ch (2005) J Appl Phys 98:114101Google Scholar
  47. 47.
    Petraru A, Pertsev NA, Kohlstedt H, Poppe U, Waser R, Solbach A, Klemradt U (2007) J Appl Phys 101:114106Google Scholar
  48. 48.
    Nagarajan V, Jenkins IG, Alpay SP, Li H, Aggarwal S, Salamanca-Riba L, Roytburd AL, Ramesh R (1999) J Appl Phys 86:595Google Scholar
  49. 49.
    Kim DM, Eom CB, Nagarajan V, Ouyang J, Ramesh R, Vaithyananthan V, Schlom DG (2006) Appl Phys Lett 88:142904Google Scholar
  50. 50.
    Saito K, Ulyanenkov A, Grossmann V, Ress H, Bruegemann L, Ohta H, Kurosawa T, Ueki S, Funakubo H (2006) Jpn J Appl Phys 45:7311Google Scholar
  51. 51.
    Speck JS, Daykin AC, Seifert A, Romanov AE, Pompe W (1995) J Appl Phys 78:1696Google Scholar
  52. 52.
    Alpay SP, Roytburd AL (1998) J Appl Phys 83:4714Google Scholar
  53. 53.
    Tuttle B, Headley T, Drewien C, Michael J, Voigt J, Garino T (1999) Ferroelectrics 221:209Google Scholar
  54. 54.
    Lee KS, Choi JH, Lee JY, Baik S (2001) J Appl Phys 90:4095CrossRefGoogle Scholar
  55. 55.
    Choi KJ, Biegalski M, Li YL, Sharan A, Schubert J, Uecher R, Reiche P, Chen YB, Pan XQ, Gopalan V, Chen LQ, Schlom dG, Eom CB (2004) Science 306:1005Google Scholar
  56. 56.
    Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, New York, p 136Google Scholar
  57. 57.
    Noheda B, Cox DE, Shirane G, Gonzalo JA, Cross LE, Park SE (1999) Appl Phys Lett 74:2059Google Scholar
  58. 58.
    Yan L, Li JF, Cao H, Viehland D (2006) Appl Phys Lett 89:262905Google Scholar
  59. 59.
    Yokoyama S, Honda Y, Morioka H, Okamoto S, Funakubo H, Iijima T, Matsuda H, Saito K, Yamamoto T, Okino H, Sakata O, Kimura S (2005) J Appl Phys 98:094106Google Scholar
  60. 60.
    Smolenskii GA, Agranovskaya A, Popov SN, Isupov VA (1958) Sov Phys Tech Phys 28:2152 (in Russian)Google Scholar
  61. 61.
    Platonov GL, Drobyshev LA, Tomashpolskii YY, Venevtsev YN (1970) Sov Phys Crystallogr 14:692Google Scholar
  62. 62.
    Bonny V, Bonin M, Sciau P, Schenk KJ, Chapuis G (1997) Solid State Commun 102:347Google Scholar
  63. 63.
    Vokov VA, Mylnikova IE, Smolenskii GA (1962) Sov Phys JETP 15:447Google Scholar
  64. 64.
    Yang Y, Liu JM, Huang HB, Zou WQ, Bao P, Liu ZG (2004) Phys Rev B 70:132101Google Scholar
  65. 65.
    Yang Y, Zhang ST, Huang HB, Chen YF, Liu ZG, Liu JM (2005) Mater Lett 59:1767Google Scholar
  66. 66.
    Ehses KH, Schmid H (1983) Z Kristallogr 162:64Google Scholar
  67. 67.
    Yan L, Li JF, Suchicital C, Viehland D (2006) Appl Phys Lett 89:132913Google Scholar
  68. 68.
    Yan L, Li JF, Viehland D (2008) J Mater Res 23:663Google Scholar
  69. 69.
    Yan L, Zhao X, Li JF, Viehland D (2009) Appl Phys Lett 94:192903Google Scholar
  70. 70.
    Kiselev SV, Ozerov RP, Zhdanov GS (1963) Sov Phys Sokl 7:742Google Scholar
  71. 71.
    Roginskaya YuE, Tomashpol’skii YuYa, Venevtsev YuN, Petrov VM, Zhdanov G (1966) Sov Phys JETP 23:47Google Scholar
  72. 72.
    Smolenskii GA, Chupis I (1982) Sov Phys Usp 25(7):475Google Scholar
  73. 73.
    Venevtsev YuN, Zhdanov G, Solov’ev S (1960) Sov Phys Crystallogr 4:538Google Scholar
  74. 74.
    Smolenskii GA, Isupov V, Agranovskaya A, Krainik N (1961) Sov Phys Solid State 2:2651Google Scholar
  75. 75.
    Fischer P, Polomskya M, Sosnowska I, Szymansksi M (1980) J Phys C 13:1931Google Scholar
  76. 76.
    Michel C, Moreau J-M, Achenbach GD, Gerson R, James WJ (1969) Solid State Commun 7:701Google Scholar
  77. 77.
    Bucci JD, Robertson BK, James WJ (1972) J Appl Crystallogr 5:187Google Scholar
  78. 78.
    Teague JR, Gerson R, James WJ (1970) Solid State Commun 8:1073Google Scholar
  79. 79.
    Sosnowska I, Perterlin-Neumaier T, Steichele E (1982) J Phys C 15:4835Google Scholar
  80. 80.
    Yan L, Cao H, Li JF, Viehland D (2009) Appl Phys Lett 94:132901Google Scholar
  81. 81.
    Xu G, Hiraka H, Shirane G, Li J, Wang J, Viehland D (2005) Appl Phys Lett 86:182905Google Scholar
  82. 82.
    Xu G, Li J, Viehland D (2006) Appl Phys Lett 89:222901Google Scholar
  83. 83.
    Zheng H, Kreisel J, Chu YH, Ramesh R, Salamanca-Riba L (2007) Appl Phys Lett 90:113113Google Scholar
  84. 84.
    Crane SP, Bihler C, Brandt MS, Goennenwein STB, Gajek M, Ramesh R (2009) J Magn Magn Mater 321:L5Google Scholar
  85. 85.
    Xing ZP, Li JF, Viehland D (2007) Appl Phys Lett 91:182902Google Scholar
  86. 86.
    Ortega N, Bhattacharya P, Katiyar RS, Dutta P, Manivannan A, Seehra MS, Takeuchi I, Majumder SB (2006) J Appl Phys 100:126105Google Scholar
  87. 87.
    Zhang JX, Dai JY, Chow CK, Sun CL, Lo VC, Chan HLW (2008) Appl Phys Lett 92:022901Google Scholar
  88. 88.
    Das J, Song YY, Mo N, Krivosik P, Patton CE (2009) Adv Mater 21:2045Google Scholar
  89. 89.
    Qiao L, Bi XF (2008) J Cryst Growth 310:5327Google Scholar
  90. 90.
    Yan L, Li JF, Viehland D (2007) J Appl Phys 101:104107Google Scholar
  91. 91.
    Yang YD, Qu LT, Dai LM, Kang TS, Durstock M (2007) Adv Mater 19:1239Google Scholar
  92. 92.
    Guo Z, Lee SE, Kim H, Park S, Hahn HT, Karki AB, Young DP (2009) Acta Mater 51:267Google Scholar
  93. 93.
    Yang YD, Li JF, Viehland D (2009) J Am Ceram Soc. doi: https://doi.org/10.1111/j.1551-2916.2009.03068.x Google Scholar
  94. 94.
    Chen H, He Y, Shiflet GJ, Poon SJ (1994) Nature 367:541Google Scholar
  95. 95.
    Bodineau T, Ioffe D, Velenik Y (2000) J Math Phys 41:1033Google Scholar
  96. 96.
    Yang YD, Priya S, Wang YU, Li JF, Viehland D (2009) J Mater Chem. doi: https://doi.org/10.1039/b903762d Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Li Yan
    • 1
    Email author
  • Yaodong Yang
    • 1
  • Zhiguang Wang
    • 1
  • Zengping Xing
    • 1
  • Jiefang Li
    • 1
  • D. Viehland
    • 1
  1. 1.Department of Materials Science and EngineeringVirginia TechBlacksburgUSA

Personalised recommendations