Advertisement

Journal of Materials Science

, Volume 44, Issue 16, pp 4460–4465 | Cite as

Effects of metal oxides addition on the electrochemical performance of M1Ni3.5Co0.6Mn0.4Al0.5 hydrogen storage alloy

  • Hongxia Huang
  • Kelong HuangEmail author
  • Suqin Liu
  • Shuxin Zhuang
  • Dongyang Chen
Article

Abstract

The AB5-type M1Ni3.5Co0.6Mn0.4Al0.5 alloy (where M1 denotes mixed lanthanide) was modified with different additives (ZnO and MnO2), and the effects of metal oxides on the electrochemical properties of the M1Ni3.5Co0.6Mn0.4Al0.5 − x% M (x = 5, 10; M = ZnO, MnO2) alloy were studied. The results showed that the addition of metal oxides had a positive effect on the activation property of the alloy electrode. With the addition of ZnO, the maximum discharge capacity of the alloy increased from 315 to 334 mAh/g (x = 5) and 341 mAh/g (x = 10) with good cycle capability (C30/Cmax) (87% for x = 5 and 85% for x = 10), while the maximum discharge capacity remained invariable and the cyclic stability was deteriorated by the addition of MnO2. Linear polarization (LP), cycle voltammetry (CV), and electrochemical impedance spectroscopy (EIS) measurements were also performed to investigate the electrochemical kinetics of alloy electrodes.

Keywords

MnO2 Discharge Capacity Electrochemical Impedance Spectroscopy MgH2 Exchange Current Density 

Notes

Acknowledgement

The authors wish to express their thanks to the National Natural Science Foundation of China (50772133) and the Open Subject of State of Key Laboratory for Powder Metallurgy of Central South University (2008112009).

References

  1. 1.
    Wang MH, Zhang LZ, Zhang Y, Sun LX, Tan ZC, Xu F, Yuan HT, Zhang T (2006) Int J Hydrogen Energy 31:775CrossRefGoogle Scholar
  2. 2.
    Goo NH, Lee KS (2002) Int J Hydrogen Energy 27:433CrossRefGoogle Scholar
  3. 3.
    Feng Y, Jiao LF, Yuan HT, Zhao M (2007) Int J Hydrogen Energy 32:1701CrossRefGoogle Scholar
  4. 4.
    Liu YF, Pan HG, Gao MX, Miao H, Lei YQ, Wang QD (2008) Int J Hydrogen Energy 33:124CrossRefGoogle Scholar
  5. 5.
    Zhang YH, Zhao DL, Li BW, Ren HP, Guo SH, Wang XL (2007) J Mater Sci 42:8172. doi: https://doi.org/10.1007/s10853-007-1689-4 CrossRefGoogle Scholar
  6. 6.
    Souza EC, Ticianelli EA (2007) Int J Hydrogen Energy 32:4917CrossRefGoogle Scholar
  7. 7.
    Liu FJ, Suda S (1996) J Alloys Compd 232:212CrossRefGoogle Scholar
  8. 8.
    Hatano YJ, Tachikawa T, Mu D, Abe T, Watanabe K, Morozumi S (2002) J Alloys Compd 330–332:816CrossRefGoogle Scholar
  9. 9.
    Wang Y, Qiao SZ, Wang X (2008) Int J Hydrogen Energy 33:1023CrossRefGoogle Scholar
  10. 10.
    Pal K (1997) J Mater Sci 32:5177. doi: https://doi.org/10.1023/A:1018633920700 CrossRefGoogle Scholar
  11. 11.
    Gao Y, Zeng MQ, Li BL, Zhu M (2003) J Mater Sci 38:2499. doi: https://doi.org/10.1023/A:1023921605728 CrossRefGoogle Scholar
  12. 12.
    Rongeat C, Grosjean MH, Ruggeri S, Dehmas M, Bourlot S, Marcotte S, Rou′e L (2006) J Power Sources 158:747CrossRefGoogle Scholar
  13. 13.
    Ruggeri S, Roue L (2003) J Power Sources 117:260CrossRefGoogle Scholar
  14. 14.
    Khrussanova M, Peshev P, Ivanov EY, Terzieva M (1987) Mater Res Bull 22:405CrossRefGoogle Scholar
  15. 15.
    Oelerich W, Klassen T, Bormann R (2001) J Alloys Compd 315:237CrossRefGoogle Scholar
  16. 16.
    Iwakura C, Fukumoto Y, Matsuoka M, Kohno T, Shinmou K (1993) J Alloys Compd 192:152CrossRefGoogle Scholar
  17. 17.
    Iwakura C, Matsuoka M, Kohno T (1994) J Electrochem Soc 141:2306CrossRefGoogle Scholar
  18. 18.
    Cheng SA, Lei YQ, Leng YJ, Wang QD (1998) J Alloys Compd 264:104CrossRefGoogle Scholar
  19. 19.
    Cui N, Luo JL (1998) Electrochim Acta 44:711CrossRefGoogle Scholar
  20. 20.
    Wang Y, Gao XP, Lu ZW, Hu WK, Zhou Z, Qu JQ (2005) Electrochim Acta 50:2187CrossRefGoogle Scholar
  21. 21.
    Zhang P, Wei XD, Liu YN, Zhu JW, Yu G (2008) Int J Hydrogen Energy 33:1304CrossRefGoogle Scholar
  22. 22.
    Zhang YH, Li BW, Ren HP, Cai Y, Dong XP, Wang XL (2007) Int J Hydrogen Energy 32:3420CrossRefGoogle Scholar
  23. 23.
    Zhang YH, Li BW, Ren HP, Cai Y, Dong XP, Wang XL (2007) Int J Hydrogen Energy 32:4627CrossRefGoogle Scholar
  24. 24.
    Khrussanova M, Terzieva M, Peshev P (1991) Int J Hydrogen Energy 16:265CrossRefGoogle Scholar
  25. 25.
    Notten PHL, Hokkeling P (1991) J Electrochem Soc 138:1877CrossRefGoogle Scholar
  26. 26.
    Chen Y (1998) Catal Today 44:3CrossRefGoogle Scholar
  27. 27.
    Liu YF, Pan HG, Gao MX, Li R, Gao MX (2004) J Alloys Compd 376:304CrossRefGoogle Scholar
  28. 28.
    Kuriyama N, Sakai T, Miyamura H, Uehara I, Ishikawa H, Iwasaki T (1992) J Electrochem Soc 139:L72CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Hongxia Huang
    • 1
    • 2
  • Kelong Huang
    • 1
    Email author
  • Suqin Liu
    • 1
  • Shuxin Zhuang
    • 1
  • Dongyang Chen
    • 1
  1. 1.College of Chemistry and Chemical EngineeringCentral South UniversityChangshaPeople’s Republic of China
  2. 2.The Department of Material and ChemistryGuilin University of TechnologyGuilinPeople’s Republic of China

Personalised recommendations