Journal of Materials Science

, Volume 44, Issue 24, pp 6519–6524 | Cite as

A facile dual templating route to fabricate hierarchically mesostructured materials

  • Dechao Niu
  • Yongsheng LiEmail author
  • Wenjie Dong
  • Wenru Zhao
  • Liang Li
  • Jianlin ShiEmail author
Mesostructured Materials


Hierarchically mesostructured materials have been successfully synthesized via a facile route using amphiphilic block copolymer polystyrene-b-poly (acrylic acid) (PS-b-PAA) and cetyl trimethyl ammonium bromide (CTAB) as dual templates. It is found that the dimension of spherical micelle-like aggregates of PS-b-PAA could be adjusted by changing the kind of solvents. With N,N-dimethylformamide (DMF) as solvent, spherical micelle-like aggregates with an average diameter of 35 nm were obtained, and bimodal mesoporous materials (BMM) possessing large pores of ~35 nm and small pores of 2.5 nm could be prepared. As the solvent was changed to N,N-dimethylformamide (DMF)/tetrahydrofuran (THF) (v/v = 1:1), the average diameter of the spherical micelle-like aggregates of PS-b-PAA was increased to 200 nm, and hollow mesoporous spheres (HMS) with 200-nm hollow cores and 25-nm shells were thus achieved.


Acrylic Acid Atomic Transfer Radical Polymerization Atomic Transfer Radical Polymerization Cetyl Trimethyl Ammonium Bromide Cetyl Trimethyl Ammonium Bromide 



This work was financially supported by the National Hi-Tech Project of China (Grant No. 2007AA03Z317); the National Natural Science Foundation of China (Grant No. 20633090) and Shanghai Natural Science Foundation (Grant No. 07ZR14028).


  1. 1.
    Dong AG, Wang YJ, Tang Y, Zhang YH, Ren N, Gao Z (2002) Adv Mater 14:1506CrossRefGoogle Scholar
  2. 2.
    Brandhuber D, Torma V, Raab C, Peterlik H, Kulak A, Husing N (2005) Chem Mater 17:4262CrossRefGoogle Scholar
  3. 3.
    Mori H, Uota M, Fujikawa D, Yoshimura T, Kuwahara T, Sakai G, Kijima T (2006) Microporous Mesoporous Mater 91:172CrossRefGoogle Scholar
  4. 4.
    Kuang DB, Brezesinski T, Smarsly B (2004) J Am Chem Soc 126:10534CrossRefGoogle Scholar
  5. 5.
    Yang P, Deng T, Zhao D, Feng P, Pine D, Chmelka BF, Whitesides GM, Stucky GD (1998) Science 282:2244CrossRefGoogle Scholar
  6. 6.
    Groenewolt M, Antonietti M (2004) Langmuir 20:7811CrossRefGoogle Scholar
  7. 7.
    Zhang L, Eisenberg A (1995) Science 268:1728CrossRefGoogle Scholar
  8. 8.
    Li XD, Hu QL, Yue LH, Shen JC (2006) Chem Eur J 12:5770CrossRefGoogle Scholar
  9. 9.
    Kuemmel M, Smatt J-H, Boissiere C, Nicole L, Sanchez C, Linden M, Grosso D (2009) J Mater Chem 19:3638CrossRefGoogle Scholar
  10. 10.
    Kang Y, Taton TA (2005) Angew Chem Int Ed Engl 44:409CrossRefGoogle Scholar
  11. 11.
    Yu Y, Zhang L, Eisenberg A (1998) Macromolecules 31:1144CrossRefGoogle Scholar
  12. 12.
    Zhang L, Yu K, Eisenberg A (1996) Science 272:1777CrossRefGoogle Scholar
  13. 13.
    Zhang L, Eisenberg A (1996) Macromolecules 29:8805CrossRefGoogle Scholar
  14. 14.
    Yu Y, Eisenberg A (1997) J Am Chem Soc 119:8383CrossRefGoogle Scholar
  15. 15.
    Niu DC, Li YS, Qiao XL, Li L, Zhao WR, Chen HR, Zhao QL, Ma Z, Shi JL (2008) Chem Commun 37:4463CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics, Chinese Academy of SciencesShanghaiChina

Personalised recommendations