Journal of Materials Science

, Volume 44, Issue 16, pp 4429–4442 | Cite as

Microstructural studies of self-supported (1.5–10 μm) Pd/23 wt%Ag hydrogen separation membranes subjected to different heat treatments

  • W. M. Tucho
  • H. J. Venvik
  • J. C. Walmsley
  • M. Stange
  • A. Ramachandran
  • R. H. Mathiesen
  • A. Borg
  • R. Bredesen
  • R. HolmestadEmail author


The microstructure of self-supported 1.5–10-μm thick Pd/23 wt%Ag membranes grown by magnetron sputtering have been studied after heat treatment and hydrogen permeation tests using electron microscopy and synchrotron X-ray diffraction. After hydrogen flux stabilization and permeance measurements at 300 °C, the membranes were annealed in air at 300 °C or in N2/Ar at 300/400/450 °C for 4 days and then tested for hydrogen permeation. The permeation results show that changes in permeability depend on the treatment atmosphere and temperature, as well as membrane thickness. Air treatment at ~300 °C generally induced a positive effect on permeation in the thickness range of 1.5–10 μm. Significant microstructural changes, including grain growth, strain relief, void formation, and growth of nodules occurred in the membranes. The changes in microstructure are more severe for the thinner membranes, and may be attributed mainly to the oxidation processes at or near the surface. For samples annealed in N2/Ar, enhanced permeation was only obtained with treatment at ~450 °C for 5 and 10 μm. The changes in the microstructure generally increased with heat-treatment temperature, and decreased with membrane's thickness. The membrane with enhanced permeation was accompanied by significant grain growth, strain relief, and surface roughening. For all the membranes, the relative changes in the microstructure were substantially more prominent on the permeate surface than on the feed surface. Details of the analysis are presented and discussed.


Triple Junction Hydrogen Diffusion Void Formation Strain Relaxation Hydrogen Permeation 


  1. 1.
    Sahaym U, Norton MG (2008) J Mater Sci 43(16):5395. doi: CrossRefGoogle Scholar
  2. 2.
    Muradov NZ, Veziroglu TN (2008) Int J Hydrogen Energy 33(23):6804CrossRefGoogle Scholar
  3. 3.
    Grashoff GJ, Pilkington CE, Corti CW (1983) Platinum Met Rev 27(4):157Google Scholar
  4. 4.
    McLeod LS, Degertekin FL, Fedorov AG (2007) Appl Phys Lett 90(26):261905-1CrossRefGoogle Scholar
  5. 5.
    Ward TL, Dao T (1999) J Membr Sci 153(2):211CrossRefGoogle Scholar
  6. 6.
    McCool BA, Lin YS (2001) J Mater Sci 36(13):3221. doi: CrossRefGoogle Scholar
  7. 7.
    Yao J, Cahoon JR (1991) Acta Metall Mater 39(1):119CrossRefGoogle Scholar
  8. 8.
    Bryden KJ, Ying JY (2002) J Membr Sci 203(1–2):29CrossRefGoogle Scholar
  9. 9.
    Yao J, Cahoon JR (1991) Acta Metall Mater 39(1):111CrossRefGoogle Scholar
  10. 10.
    Janßen S, Natter H, Hempelmann R, Striffler T, Stuhr U, Wipf H, Hahn H, Cook JC (1997) Nanostruct Mater 9(1–8):579CrossRefGoogle Scholar
  11. 11.
    Kirchheim R (1981) Acta Metall 29(5):835CrossRefGoogle Scholar
  12. 12.
    Tucho WM (2009) PhD Thesis, Norwegian University of Science and Technology, pp 59–79 Google Scholar
  13. 13.
    Okazaki J, Ikeda T, Pacheco Tanaka DA, Suzuki TM, Mizukami F (2009) J Membr Sci 335(1-2):126CrossRefGoogle Scholar
  14. 14.
    Xomeritakis G, Lin Y-S (1998) AIChE J 44(1):174CrossRefGoogle Scholar
  15. 15.
    Mejdell AL, Klette H, Ramachandran A, Borg A, Bredesen R (2008) J Membr Sci 307(1):96CrossRefGoogle Scholar
  16. 16.
    Bredesen R, Klette H (2000) Method of manufacturing thin metal membranes. US Patent 6,086,729Google Scholar
  17. 17.
    ESRF Station Bending Magnet 1B (BM1B) [cited 15-10-2008]Google Scholar
  18. 18.
    Delhez R, de Keijser TH, Langford JI, Louer D, Mittemeijer EJ, Sonneveld EJ (1995) In: Young RA (ed) The Rietveld method. Oxford Univ. Press, OxfordGoogle Scholar
  19. 19.
    Balzar D, Audebrand N, Daymond MR, Fitch A, Hewat A, Langford JI, Le Bail A, Louer D, Masson O, McCowan CN, Popa NC, Stephens PW, Toby BH (2004) J Appl Crystallogr 37(6):911CrossRefGoogle Scholar
  20. 20.
    Larson AC, Dreele RBV (2004) General structure analysis system (GSAS), Los Alamos National Laboratory report 1985–2004. Los Alamos National Laboratory, Los AlamosGoogle Scholar
  21. 21.
    McCusker LB, Von Dreele RB, Cox DE, Louer D, Scardi P (1999) J Appl Crystallogr 32(1):36CrossRefGoogle Scholar
  22. 22.
    Karen P, Woodward PM (1998) J Solid State Chem 141:78CrossRefGoogle Scholar
  23. 23.
    Mekonnen W, Arstad B, Klette H, Walmsley JC, Bredesen R, Venvik H, Holmestad R (2008) J Membr Sci 310(1–2):337CrossRefGoogle Scholar
  24. 24.
    Brandon DG, Kaplan WD (1999) Microstructural characterization of materials, vol XIII. Wiley, Chichester, p 20Google Scholar
  25. 25.
    Hurlbert RC, Konecny JO (1961) J Chem Phys 34(2):655CrossRefGoogle Scholar
  26. 26.
    Dittmeyer R, Höllein V, Daub K (2001) J Mol Catal A: Chem 173(1-2):135CrossRefGoogle Scholar
  27. 27.
    Musket RG (1976) J Less Common Metals 45(2):173CrossRefGoogle Scholar
  28. 28.
    Elkina IB, Meldon JH (2002) Desalination 147(1-3):445CrossRefGoogle Scholar
  29. 29.
    Mejdell AL, Jøndahl M, Peters TA, Bredesen R, Venvik HJ (2009) J Membr Sci 327(1–2):6CrossRefGoogle Scholar
  30. 30.
    Thompson CV, Carel R (1995) Mater Sci Eng B 32(3):211CrossRefGoogle Scholar
  31. 31.
    Ramachandran A (2009) PhD Thesis, Norwegian University of Science and Technology, pp 51–71Google Scholar
  32. 32.
    Shu J, Bongondo BEW, Grandjean BPA, Adnot A, Kaliaguine S (1993) Surf Sci 291(1-2):129CrossRefGoogle Scholar
  33. 33.
    Porter DA, Easterling KE (1991) Phase transformations in metals and alloys. Chapman & Hall, LondonGoogle Scholar
  34. 34.
    Gianola DS, Cheng CEXM, Hemker KJ (2008) Adv Mater 20(2):303CrossRefGoogle Scholar
  35. 35.
    Koch CC, Scattergood RO, Darling KA, Semones JE (2008) J Mater Sci 43:7264. doi: CrossRefGoogle Scholar
  36. 36.
    Uemiya S (1999) Sep Purif Rev 28(1):51CrossRefGoogle Scholar
  37. 37.
    Huang M, Wang Y, Chang YA (2004) Thin Solid Films 449(1-2):113CrossRefGoogle Scholar
  38. 38.
    Thompson CV (1990) Annu Rev Mater Sci 20:245CrossRefGoogle Scholar
  39. 39.
    Rohrer GS (2005) Annu Rev Mater Res 35:99CrossRefGoogle Scholar
  40. 40.
    Shugurov AR, Panin AV, Chun H-G, Loginov VA (2005) Science and technology, 2005. KORUS 2005. Proceedings. The 9th Russian-Korean international symposium onGoogle Scholar
  41. 41.
    Vlasov NM, Fedik II (2002) Int J Hydrogen Energy 27(9):921CrossRefGoogle Scholar
  42. 42.
    Vlasov NM, Fedik II (2003) Metal Sci Heat Treat 45(7):328CrossRefGoogle Scholar
  43. 43.
    Dutton R (1984) Int J Hydrogen Energy 9(1–2):147CrossRefGoogle Scholar
  44. 44.
    O’M Bockris J, Minevski ZS (1998) Int J Hydrogen Energy 23(12):1079CrossRefGoogle Scholar
  45. 45.
    Gegner J, Hörz G, Kirchheim R (2009) J Mater Sci 44:2198. doi: CrossRefGoogle Scholar
  46. 46.
    Aggarwal S, Monga AP, Perusse SR, Ramesh R, Ballarotto V, Williams ED, Chalamala BR, Wei Y, Reuss RH (2000) Science 287(5461):2235CrossRefGoogle Scholar
  47. 47.
    Bucur RV, Ersson NO, Tong XQ (1991) J Less Common Metals 172–174(Part 2):748CrossRefGoogle Scholar
  48. 48.
    Gao H, Lin YS, Li Y, Zhang B (2004) Ind Eng Chem Res 43(22):6920CrossRefGoogle Scholar
  49. 49.
    Mingmei W, Paul GS (1988) In: Raymond L (ed) Hydrogen embrittlement. ASTM International, Newport BeachGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • W. M. Tucho
    • 1
  • H. J. Venvik
    • 2
  • J. C. Walmsley
    • 1
    • 3
  • M. Stange
    • 3
  • A. Ramachandran
    • 1
  • R. H. Mathiesen
    • 1
  • A. Borg
    • 1
  • R. Bredesen
    • 3
  • R. Holmestad
    • 1
    Email author
  1. 1.Department of PhysicsNTNUTrondheimNorway
  2. 2.Department of Chemical EngineeringNTNUTrondheimNorway
  3. 3.SINTEF Materials & ChemistryBlindern, OsloNorway

Personalised recommendations