Journal of Materials Science

, Volume 44, Issue 16, pp 4399–4406 | Cite as

Actual versus apparent within cell wall variability of nanoindentation results from wood cell walls related to cellulose microfibril angle

  • Johannes KonnerthEmail author
  • Notburga Gierlinger
  • Jozef Keckes
  • Wolfgang Gindl


Hardness and elastic modulus of spruce wood cell walls parallel to their axial direction were investigated by means of nanoindentation. In the secondary cell wall layer S2 of individual earlywood and compression wood tracheids, a systematic pattern variability was found. Several factors potentially affecting nanoindentation results were investigated, i.e. specimen orientation related to the indenter tip, cutting direction during specimen preparation, tip geometry, specimen and fibre inclination, respectively, and finally micro fibril orientation. Mechanical property measurements were correlated with structural features measured by confocal Raman spectroscopy. It was demonstrated that very high variability in the measurement of micromechanical cell wall properties can be caused by unintentional small fibre misalignment by few degrees with regard to the indentation direction caused by sub-optimal specimen preparation.


Cellulose Microfibril Compression Wood Wood Cell Wall Cell Wall Layer Confocal Raman Spectroscopy 



J. Konnerth gratefully acknowledges financial support by the government of the city of Vienna: “Hochschuljubiläumsstiftung” under Grant No. H-2036/2006.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. 1.
    Fratzl P (2003) Curr Opin Colloid Interface Sci 8:32CrossRefGoogle Scholar
  2. 2.
    Page DH, Elhossei F, Winkler K (1971) Nature 229:252CrossRefGoogle Scholar
  3. 3.
    Burgert I, Fruhmann K, Keckes J, Fratzl P, Stanzl-Tschegg SE (2003) Holzforschung 57:661CrossRefGoogle Scholar
  4. 4.
    Burgert I, Keckes J, Fruhmann K, Fratzl P, Tschegg SE (2002) Plant Biol 4:9CrossRefGoogle Scholar
  5. 5.
    Eder M, Stanzl-Tschegg S, Burgert I (2008) Wood Sci Technol 42:679CrossRefGoogle Scholar
  6. 6.
    Wimmer R, Lucas BN, Tsui TY, Oliver WC (1997) Wood Sci Technol 31:131CrossRefGoogle Scholar
  7. 7.
    Gindl W, Gupta HS (2002) Composites Part A Appl Sci Manuf 33:1141CrossRefGoogle Scholar
  8. 8.
    Gindl W, Gupta HS, Schöberl T, Lichtenegger HC, Fratzl P (2004) Appl Phys A Mater 79:2069CrossRefGoogle Scholar
  9. 9.
    Gindl W, Schoberl T (2004) Composites Part A Appl Sci Manuf 35:1345CrossRefGoogle Scholar
  10. 10.
    Jakes JE, Frihart CR, Beecher JF, Moon RJ, Stone DS (2008) J Mater Res 23:1113CrossRefGoogle Scholar
  11. 11.
    Konnerth J, Gindl W (2006) Holzforschung 60:429CrossRefGoogle Scholar
  12. 12.
    Tze WTY, Wang S, Rials TG, Pharr GM, Kelley SS (2007) Composites Part A Appl Sci Manuf 38:945CrossRefGoogle Scholar
  13. 13.
    Wang S, Lee SH, Tze WTY, Rials TG, Pharr GM (2006) In: Nanoindentation as a tool for understanding nano-mechanical properties of wood cell wall and biocomposites, AtlantaGoogle Scholar
  14. 14.
    Yu Y, Fei B, Zhang B, Yu X (2007) Wood Fiber Sci 39:527Google Scholar
  15. 15.
    Oliver WC, Pharr GM (1992) J Mater Res 7:1564CrossRefGoogle Scholar
  16. 16.
    Gindl W, Reifferscheid M, Adusumalli RB, Weber H, Roder T, Sixta H, Schoberl T (2008) Polymer 49:792CrossRefGoogle Scholar
  17. 17.
    Konnerth J, Harper D, Lee SH, Rials TG, Gindl W (2008) Holzforschung 62:91Google Scholar
  18. 18.
    Konnerth J, Valla A, Gindl W (2007) Appl Phys A Mater 88:371CrossRefGoogle Scholar
  19. 19.
    Gierlinger N, Schwanninger M (2006) Plant Physiol 140:1246CrossRefGoogle Scholar
  20. 20.
    Gierlinger N, Schwanninger M (2007) Spectrosc Int J 21:69CrossRefGoogle Scholar
  21. 21.
    Page DH, Elhosseiny F, Winkler K, Lancaster APS (1977) Tappi J 60:114Google Scholar
  22. 22.
    Swadener JG, Rho JY, Pharr GM (2001) J Biomed Mater Res A 57:108CrossRefGoogle Scholar
  23. 23.
    Vlassak JJ, Nix WD (1993) Philos Mag A Phys Condens Matter 67:1045Google Scholar
  24. 24.
    Wiley JH, Atalla RH (1987) Carbohydr Res 160:113CrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Johannes Konnerth
    • 1
    Email author
  • Notburga Gierlinger
    • 2
  • Jozef Keckes
    • 3
  • Wolfgang Gindl
    • 1
  1. 1.Department of Material Sciences and Process Engineering, Institute of Wood Science and TechnologyBOKU-University of Natural Resources and Applied Life SciencesViennaAustria
  2. 2.Department of BiomaterialsMax-Planck Institute of Colloids and InterfacesPotsdamGermany
  3. 3.Department Materials Physics, Erich Schmid Institute of Materials Science, Austrian Academy of SciencesUniversity of LeobenLeobenAustria

Personalised recommendations