Advertisement

Journal of Materials Science

, Volume 44, Issue 19, pp 5225–5234 | Cite as

Field-induced inter-ferroelectric phase transformations and domain mechanisms in high-strain piezoelectric materials: insights from phase field modeling and simulation

  • Yu U. WangEmail author
Ferroelectrics

Abstract

Large, reversible and anhysteretic strain induced by external field is desired for multifunctional materials used in sensors, actuators and transducers. However, these desired attributes usually compromise each other, leading to trade-offs in materials’ properties and limiting their applicability. This paper focuses on field-induced inter-ferroelectric phase transformations. Some fundamental principles and domain mechanisms are systematized based on insights learned from phase field modeling and simulations, whose synergistic operations are expected to provide unique combination of large, reversible, and anhysteretic strain attributes. These working principles are: (i) Field-induced inter-ferroelectric structural phase transformation to achieve large strain; (ii) Field-induced stable-metastable phase transformation to maximize reversibility; (iii) Heterogeneous nucleation-and-growth process at domain walls to enhance low-field responses; (iv) Deactivation of domain wall motion by applying external fields along nonpolar axes to minimize hysteresis; (v) Domain wall broadening mechanism and domain size effect to exploit nanoscale engineered domain microstructures; and (vi) Bridging domain mechanism and phase coexistence to promote ferroelectric shape memory effects. It is shown that special initial domain microstructures and preferred evolution kinetic pathways can be achieved by crystallographic domain engineering technique, which allow multiple principles to work together without compromising one another. Due to the commonalities and fundamental interrelations among ferroelectric, ferromagnetic and ferroelastic materials, the gained understanding of thermodynamic and kinetic principles has general implications to displacive phase transformations in ferroic materials and is helpful for design of new functional materials with advanced field-induced strain properties.

Keywords

Domain Wall Morphotropic Phase Boundary Phase Coexistence Domain Wall Motion Phase Field Modeling 

Notes

Acknowledgements

Support from National Science Foundation under Grant No. DMR-0705947 is acknowledged. The parallel computer simulations were performed on System X at Virginia Tech and Lonestar at Texas Advanced Computing Center.

References

  1. 1.
    Jin YM, Artemev A, Khachaturyan AG (2001) Acta Mater 49:2309CrossRefGoogle Scholar
  2. 2.
    Rao WF, Wang YU (2008) Appl Phys Lett 92:102905CrossRefGoogle Scholar
  3. 3.
    Semenovskaya S, Khachaturyan AG (1998) J Appl Phys 83:5125CrossRefGoogle Scholar
  4. 4.
    Semenovskaya S, Khachaturyan AG (1998) Ferroelectrics 206–207:157CrossRefGoogle Scholar
  5. 5.
    Li YL, Hu SY, Liu ZK, Chen LQ (2001) Appl Phys Lett 78:3878CrossRefGoogle Scholar
  6. 6.
    Rao WF, Wang YU (2007) Appl Phys Lett 91:052901CrossRefGoogle Scholar
  7. 7.
    Rossetti GA Jr, Zhang W, Khachaturyan AG (2006) Appl Phys Lett 88:072912CrossRefGoogle Scholar
  8. 8.
    Devonshire AF (1949) Philos Mag 40:1040CrossRefGoogle Scholar
  9. 9.
    Amin A, Haun MJ, Badger B, McKinstry H, Cross LE (1985) Ferroelectrics 65:107CrossRefGoogle Scholar
  10. 10.
    Khachaturyan AG (1983) Theory of structural transformations in solids. John Wiley & Sons, New York, p 198Google Scholar
  11. 11.
    Cahn JW, Hilliard JE (1958) J Chem Phys 28:258CrossRefGoogle Scholar
  12. 12.
    Jona F, Shirane G (1962) Ferroelectric crystals. Pergamon Press, Oxford, pp 108, 221Google Scholar
  13. 13.
    Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. London, Academic PressGoogle Scholar
  14. 14.
    Kuwata J, Uchino K, Nomura S (1981) Ferroelectrics 37:579CrossRefGoogle Scholar
  15. 15.
    Choi SW, Shrout TR, Jang SJ, Bhalla AS (1989) Ferroelectrics 100:29CrossRefGoogle Scholar
  16. 16.
    Park SE, Shrout TR (1997) J Appl Phys 82:1804CrossRefGoogle Scholar
  17. 17.
    Park SE, Wada S, Cross LE, Shrout TR (1999) J Appl Phys 86:2746CrossRefGoogle Scholar
  18. 18.
    Wada S, Yako K, Kakemoto H, Tsurumi T, Kiguchi T (2005) J Appl Phys 98:014109CrossRefGoogle Scholar
  19. 19.
    Rao WF, Wang YU (2007) Appl Phys Lett 90:041915CrossRefGoogle Scholar
  20. 20.
    Jin YM, Wang YU, Khachaturyan AG, Li JF, Viehland D (2003) Phys Rev Lett 91:197601CrossRefGoogle Scholar
  21. 21.
    Jin YM, Wang YU, Khachaturyan AG, Li JF, Viehland D (2003) J Appl Phys 94:3629CrossRefGoogle Scholar
  22. 22.
    Wang YU (2006) Phys Rev B 73:014113CrossRefGoogle Scholar
  23. 23.
    Wang YU (2006) Phys Rev B 74:104109CrossRefGoogle Scholar
  24. 24.
    Wang YU (2007) Phys Rev B 76:024108CrossRefGoogle Scholar
  25. 25.
    Rossetti GA Jr, Khachaturyan AG (2007) Appl Phys Lett 91:072909CrossRefGoogle Scholar
  26. 26.
    Rossetti GA Jr, Khachaturyan AG, Akcay G, Ni Y (2008) J Appl Phys 103:114113CrossRefGoogle Scholar
  27. 27.
    Wang H, Zhu J, Lu N, Bokov AA, Ye ZG, Zhang XW (2006) Appl Phys Lett 89:042908CrossRefGoogle Scholar
  28. 28.
    Wang H, Zhu J, Zhang XW, Tang YX, Luo HS (2008) Appl Phys Lett 92:132906CrossRefGoogle Scholar
  29. 29.
    Wang H, Zhu J, Zhang XW, Tang YX, Luo HS (2008) J Am Ceram Soc 91:2382CrossRefGoogle Scholar
  30. 30.
    Bhattacharyya S, Jinschek JR, Cao H, Wang YU, Li J, Viehland D (2008) Appl Phys Lett 92:142904CrossRefGoogle Scholar
  31. 31.
    Schönau KA, Schmitt LA, Knapp M, Fuess H, Eichel RA, Kungl H, Hoffmann MJ (2007) Phys Rev B 75:184117CrossRefGoogle Scholar
  32. 32.
    Schönau KA, Knapp M, Kungl H, Hoffmann MJ, Fuess H (2007) Phys Rev B 76:144112CrossRefGoogle Scholar
  33. 33.
    Theissmann R, Schmitt LA, Kling J, Schierholz R, Schönau KA, Fuess H, Knapp M, Kungl H, Hoffmann MJ (2007) J Appl Phys 102:024111CrossRefGoogle Scholar
  34. 34.
    Schmitt LA, Schönau KA, Theissmann R, Fuess H, Kungl H, Hoffmann MJ (2007) J Appl Phys 101:074107CrossRefGoogle Scholar
  35. 35.
    Noheda B, Cox DE (2006) Phase Transitions 79:5CrossRefGoogle Scholar
  36. 36.
    Noheda B, Cox DE, Shirane G, Gonzalo JA, Cross LE, Park SE (1999) Appl Phys Lett 74:2059CrossRefGoogle Scholar
  37. 37.
    Kuwata J, Uchino K, Nomura S (1982) Jpn J Appl Phys 21:1298CrossRefGoogle Scholar
  38. 38.
    Shrout TR, Chang ZP, Kim N, Markgraf S (1990) Ferroelectrics Lett 12:63CrossRefGoogle Scholar
  39. 39.
    Benguigui L (1972) Solid State Commun 11:825CrossRefGoogle Scholar
  40. 40.
    Kakegawa K, Mohri J, Shirasaki S, Takahashi K (1982) J Am Ceram Soc 65:515CrossRefGoogle Scholar
  41. 41.
    Cao W, Cross LE (1993) Phys Rev B 47:4825CrossRefGoogle Scholar
  42. 42.
    Isupov VA (2002) Ferroelectrics 266:91CrossRefGoogle Scholar
  43. 43.
    Rao WF, Wang YU (2007) Appl Phys Lett 90:182906CrossRefGoogle Scholar
  44. 44.
    Li YL, Chen LQ (2006) Appl Phys Lett 88:072905CrossRefGoogle Scholar
  45. 45.
    Ni Y, Jin YM, Khachaturyan AG (2008) Metall Mater Trans A 39:1658CrossRefGoogle Scholar
  46. 46.
    Clark AE (1980) In: Wohlfarth EP (ed) Ferromagnetic materials, vol 1. North-Holland, Amsterdam, p 531Google Scholar
  47. 47.
    Saburi T (1998) In: Otsuka K, Wayman CM (eds) Shape memory materials. Cambridge University Press, Cambridge, p 49Google Scholar
  48. 48.
    Chernenko VA, Segui C, Cesari E, Pons J, Kokorin VV (1998) Phys Rev B 57:2659CrossRefGoogle Scholar
  49. 49.
    Newnham RE (1998) Acta Crystallogr A 54:729CrossRefGoogle Scholar
  50. 50.
    Chernenko VA, Cesari E, Khovailo V, Pons J, Segui C, Takagi T (2005) J Magn Magn Mater 290–291:871CrossRefGoogle Scholar
  51. 51.
    Holden AP, Lord DG, Grundy PJ (1996) J Appl Phys 79:4650CrossRefGoogle Scholar
  52. 52.
    Ren X, Miura N, Zhang J, Otsuka K, Tanaka K, Koiwa M, Suzuki T, Chumlyakov Y, Asai M (2001) Mater Sci Eng A 312:196CrossRefGoogle Scholar
  53. 53.
    Wada S, Muraoka K, Kakemoto H, Tsurumi T, Kumagai H (2004) Jpn J Appl Phys 43:6692CrossRefGoogle Scholar
  54. 54.
    Damjanovic D (2005) J Am Ceram Soc 88:2663CrossRefGoogle Scholar
  55. 55.
    Fu H, Cohen RE (2000) Nature 403:281CrossRefGoogle Scholar
  56. 56.
  57. 57.
    Trolier-McKinstry S, Muralt P (2004) J Electroceram 12:7CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringMichigan TechHoughtonUSA

Personalised recommendations