Advertisement

Journal of Materials Science

, Volume 44, Issue 17, pp 4522–4530 | Cite as

Reinforcement of polysiloxane with superhydrophobic nanosilica

  • Xu Huang
  • XianLi Fang
  • Zhen Lu
  • Su ChenEmail author
Article

Abstract

We systemically report on a new method for producing reinforced poly(dimethylsiloxane) (PDMS) with superhydrophobic nanosilica. Firstly, we rationally designed to synthesize a series of well-dispersed hydrophobic nanosilica by using hexadecyltrimethoxysilane (HDTMS) as the treatment agent. Fourier transforms infrared (FT-IR) spectrum, thermo-gravimetric analysis (TGA), and contact angle (CA) measurement were used to characterize the grafting degree of HDTMS grafted onto the surface of nanosilica. Subsequently, we employed these modified hydrophobic nanosilica to further reinforce PDMS. The properties of as-prepared modified nanosilica filled PDMS composites were thoroughly investigated by rheological test, scanning electron microscopy (SEM), TGA, and dynamic mechanical analysis (DMA). We have found that these as-prepared superhydrophobic nanosilica exhibit uniform dispersity in the PDMS matrix, and their composites exhibit good mechanical properties and obvious advantage on thermal stability compared with those of the pure silica filled PDMS composites.

Keywords

Contact Angle PDMS Fumed Silica Dynamic Mechanical Analysis Superhydrophobic Surface 

Notes

Acknowledgements

This work was supported by Natural Science Foundations (NSFs) of China (Grant No. 20576053, 20606016), NSF (NASA) of China (Grant No. 10676013), “863” Important National Science and Technology Specific Project (Grant No. 2007AA06A402), and the NSF of the Jiangsu Higher Education Institutions of China (Grant No. 07KJA53009).

References

  1. 1.
    Pérez LD, Giraldo LF, López BL, Hess M (2006) Macromol Symp 245–246:628Google Scholar
  2. 2.
    Okel TA, Waddell WH (1994) Rubber Chem Technol 68:59CrossRefGoogle Scholar
  3. 3.
    Cochrane H, Lin CS (1992) Rubber Chem Technol 66:48CrossRefGoogle Scholar
  4. 4.
    Lutz MA, Polmanteer KE, Chapman HL (1988) Rubber Chem Technol 58:939CrossRefGoogle Scholar
  5. 5.
    Polmanteer KE (1987) Rubber Chem Technol 61:470CrossRefGoogle Scholar
  6. 6.
    Pan GR, Center JE, Schaefer DW (2003) J Polym Sci Part B Polym Phys 41:3314CrossRefGoogle Scholar
  7. 7.
    Burnside SD, Giannelis EP (2000) J Polym Sci Part B Polym Phys 38:1595CrossRefGoogle Scholar
  8. 8.
    Paquien JN, Galy J, Gérard JF, Pouchelon A (2005) Colloids Surf A 260:165CrossRefGoogle Scholar
  9. 9.
    Dewimille L, Bresson B, Bokobza L (2005) Polymer 46:4135CrossRefGoogle Scholar
  10. 10.
    Yuan QW, Mark JE (1999) Macromol Chem Phys 200:206CrossRefGoogle Scholar
  11. 11.
    Aranguren MI, Mora E, DeGroot JV Jr, Macoskoa CW (1992) J Rheol 36(6):1165CrossRefGoogle Scholar
  12. 12.
    Suzuki N, Yatsuyanagi F, Ito M, Kaidou H (2002) J Appl Polym Sci 86:1622CrossRefGoogle Scholar
  13. 13.
    Crosby AJ, Lee JY (2007) Polym Rev 47:217CrossRefGoogle Scholar
  14. 14.
    Coran AY, Ignatz-Hoover F, Smakula PC (1993) Rubber Chem Technol 67:237CrossRefGoogle Scholar
  15. 15.
    Léopoldès J, Barrès C, Leblanc JL, Georget P (2004) J Appl Polym Sci 91:577CrossRefGoogle Scholar
  16. 16.
    Maier PG, Göritz D (1996) Kautsch Gummi Kunstst 49:18Google Scholar
  17. 17.
    Heinrich G, Klüppel M (2002) Adv Polym Sci 160:1CrossRefGoogle Scholar
  18. 18.
    Deng Q, Hahn JR, Stasser J, Preston JD, Burns GT (2000) Rubber Chem Technol 73(4):647CrossRefGoogle Scholar
  19. 19.
    Luginsland HD, Frohlich J, Wehmeier A (2002) Rubber Chem Technol 75:563CrossRefGoogle Scholar
  20. 20.
    Clément F, Bokobza L, Monnerie L (2005) Rubber Chem Technol 78:211CrossRefGoogle Scholar
  21. 21.
    Payne AR (1960) J Appl Polym Sci 7:127CrossRefGoogle Scholar
  22. 22.
    Shim SE, Isayev AI (2004) Rheol Acta 43:127CrossRefGoogle Scholar
  23. 23.
    Aranguren MI, Mora E, Macosko CW (1997) J Colloid Interf Sci 195:329CrossRefGoogle Scholar
  24. 24.
    Sahakaro K, Beraheng S (2008) J Appl Polym Sci 109:3839CrossRefGoogle Scholar
  25. 25.
    Zhu ZY, Thompson T, Wang SQ, von Meerwall ED, Halasa A (2005) Macromolecules 38:8816CrossRefGoogle Scholar
  26. 26.
    Daoud WA, Xin JH, Tao XM (2004) J Am Ceram Soc 87:1782CrossRefGoogle Scholar
  27. 27.
    Yang SY, Chen S, Tian Y, Feng C, Chen L (2008) Chem Mater 20:1233CrossRefGoogle Scholar
  28. 28.
    Chen S, Hu CH, Chen L, Xu NP (2007) Chem Commun 1919Google Scholar
  29. 29.
    Huang X, Hu CH, Cai XJ, Chen S (2009) Chin J Inorg Chem 25:184Google Scholar
  30. 30.
    Xu W, Raychowdhury S, Jiang DD, Retsos H, Giannelis EP (2008) Small 4:662CrossRefGoogle Scholar
  31. 31.
    Wu YP, Zhao QS, Zhao SH, Zhang LQ (2008) J Appl Polym Sci 108:112CrossRefGoogle Scholar
  32. 32.
    Leblanc JL (2002) Prog Polym Sci 27:627CrossRefGoogle Scholar
  33. 33.
    Mélé P, Albérola ND (1996) Polym Compos 17:751CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.State Key Laboratory of Material-Oriented Chemical Engineering and College of Chemistry and Chemical EngineeringNanjing University of TechnologyNanjingPeople’s Republic of China

Personalised recommendations