Journal of Materials Science

, Volume 44, Issue 16, pp 4487–4490 | Cite as

The cyclic-fatigue behaviour of an epoxy polymer modified with micron-rubber and nano-silica particles

  • C. M. ManjunathaEmail author
  • A. C. Taylor
  • A. J. Kinloch
  • S. Sprenger


Fibre-reinforced plastic (FRP) composites are widely used in ship hull, airframe and wind turbine structural applications where they are subjected to various types of constant and variable amplitude cyclic-fatigue loads. Hence, fatigue-durability is one of the important requirements for such composite materials. These FRPs, generally, contain continuous fibres of carbon or glass reinforced in a thermosetting epoxy-polymer matrix. The epoxy polymers are amorphous and highly cross-linked materials, because of which they have many useful structural properties such as a high modulus and failure strength, good creep resistance, good thermal properties, etc. However, they are relatively brittle and have poor resistance to crack initiation and growth. This, in turn, may adversely affect the overall performance of the FRPs under static and cyclic-fatigue loads.

The addition of micron-rubber and nano-silica particles in the epoxy polymer has been shown to impart significant...


Fatigue Life Void Growth Neat Epoxy Epoxy Polymer Fatigue Crack Propagation Rate 



Dr. CM Manjunatha wishes to thank and acknowledge the UK-India Education and Research Initiative (UKIERI) for awarding the Research Fellowship and Dr. AR Upadhya, Director, National Aerospace Laboratories, Bangalore, India for permitting him to accept the Fellowship. Mr. J Sohn Lee is thanked for his assistance with the FEG-SEM work.


  1. 1.
    Kinloch AJ, Shaw SJ, Tod DA, Hunston DL (1983) Polymer 24(10):1341CrossRefGoogle Scholar
  2. 2.
    Yee AF, Pearson RA (1986) J Mater Sci 21(7):2462. doi: CrossRefGoogle Scholar
  3. 3.
    Kinloch AJ (2003) Mater Res Soc Bull 28(6):445CrossRefGoogle Scholar
  4. 4.
    Ma J, Mo MS, Du XS, Rosso P, Friedrich K, Kuan HC (2008) Polymer 49(16):3510CrossRefGoogle Scholar
  5. 5.
    Kinloch AJ, Mohammed RD, Taylor AC, Eger C, Sprenger S, Egan D (2005) J Mater Sci 40(18):5083. doi: CrossRefGoogle Scholar
  6. 6.
    Kinloch AJ, Mohammed RD, Taylor AC, Sprenger S, Egan D (2006) J Mater Sci 41(15):5043. doi: CrossRefGoogle Scholar
  7. 7.
    Kinloch AJ, Masania K, Taylor AC, Sprenger S, Egan D (2008) J Mater Sci 43(3):1151. doi: CrossRefGoogle Scholar
  8. 8.
    American Society for Testing and Materials (2003) Standard test method for tensile properties of plastics, ASTM D638-01, Annual book of ASTM Standards, vol 8.02. American Society for Testing and Materials, PAGoogle Scholar
  9. 9.
    Zhou Y, Pervin F, Jeelani S, Mallick PK (2008) J Mater Proc Tech 198:445CrossRefGoogle Scholar
  10. 10.
    Zhou Y, Rangari V, Mahfuz H, Jeelani S, Mallik PK (2005) Mater Sci Eng A 402:109CrossRefGoogle Scholar
  11. 11.
    Azimi HR, Pearson RA, Hertzberg RW (1996) J Mater Sci 31(14):3777. doi: CrossRefGoogle Scholar
  12. 12.
    Johnsen BB, Kinloch AJ, Mohammed RD, Taylor AC, Sprenger S (2007) Polymer 48(2):530CrossRefGoogle Scholar
  13. 13.
    Blackman BRK, Kinloch AJ, Sohn Lee J, Taylor AC, Agarwal R, Schueneman G, Sprenger S (2007) J Mater Sci 42(16):7049. doi: CrossRefGoogle Scholar
  14. 14.
    Case SW, Reifsnider KL (2003) In: Milne I, Ritchie RO, Karihaloo B (eds) Comprehensive structural integrity, vol 4, cyclic loading and fatigue, 1st edn. Elsevier Science, Amsterdam, p 405Google Scholar
  15. 15.
    Talreja R (1987) Fatigue of composite materials. Technomic, Lancaster, PA, USAGoogle Scholar
  16. 16.
    Manjunatha CM, Taylor AC, Kinloch AJ, Sprenger S (2009) J Mater Sci 44(1):342. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • C. M. Manjunatha
    • 1
    Email author
  • A. C. Taylor
    • 1
  • A. J. Kinloch
    • 1
  • S. Sprenger
    • 2
  1. 1.Department of Mechanical EngineeringImperial College LondonLondonUK
  2. 2.Nanoresins AGGeesthachtGermany

Personalised recommendations