Advertisement

Journal of Materials Science

, Volume 44, Issue 19, pp 5312–5317 | Cite as

Evidence of 90° polarization switching in polycrystalline macro-domains of self-supported BaTiO3 films

  • Nathan Suleimanov
  • Alla Milner
  • Ilijya Zon
  • Alexander Roytburd
  • Igor LubomirskyEmail author
Ferroelectrics
  • 96 Downloads

Abstract

It was shown previously that the self-supported films of nanocrystalline (30–80 nm) BaTiO3 spontaneously split into regions, within which the direction of spontaneous polarization of each grain is aligned as closely as possible to some average direction. These regions, called polycrystalline macro-domains, may be of two types: (1) those with out-of-plane polarization and (2) those with in-plane polarization. In-plane macro-domains exhibit in-plane optical anisotropy which can be monitored using cross-polarized transmitted light. This property was utilized in the current work to study the influence of temperature variation on macro-domains. According to the temperature dependence of the intensity of cross-polarized transmitted light, the films could be divided into three groups: (group 1) those films that did not exhibit strong changes in intensity; (group 2) those that exhibited a strong and abrupt change at a temperature between 20 and 120 °C; and (group 3) those that upon heating exhibited a gradual increase in the intensity of the cross-polarized transmitted light. The observed changes were reversible and consistent with a 90° rotation of the c-axis of some grains, which caused reversible changes in the macro-domain structure.

Keywords

BaTiO3 Zirconium Titanate Optical Anisotropy Lead Zirconium Titanate Polarization Switching 

Notes

Acknowledgements

The authors wish to acknowledge the US–Israel Binational Science Foundation, the Nancy and Stephen Grand Research Center for Sensors and Security and the Israel Ministry of Science for funding this research. This research is made possible in part by the historic generosity of the Harold Perlman Family. We are grateful to Drs. Ellen Wachtel and Yshai Feldman of the Weizmann Institute of Science for fruitful discussions and help with XRD measurements.

References

  1. 1.
    Streiffer SK, Parker CB, Romanov AE, Lefevre MJ, Zhao L, Speck JS, Pompe W, Foster CM, Bai GR (1998) J Appl Phys 83:2742CrossRefGoogle Scholar
  2. 2.
    Speck JS, Seifert A, Pompe W, Ramesh R (1994) J Appl Phys 76:477CrossRefGoogle Scholar
  3. 3.
    Speck JS, Daykin AC, Seifert A, Romanov AE, Pompe W (1995) J Appl Phys 78:1696CrossRefGoogle Scholar
  4. 4.
    Roytburd AL, Alpay SP, Bendersky LA, Nagarajan V, Ramesh R (2001) J Appl Phys 89:553CrossRefGoogle Scholar
  5. 5.
    Roytburd AL (1998) J Appl Phys 83:239CrossRefGoogle Scholar
  6. 6.
    Roytburd AL (1998) J Appl Phys 83:228CrossRefGoogle Scholar
  7. 7.
    Roytburd AL (1993) Phase Trans 45:1CrossRefGoogle Scholar
  8. 8.
    Romanov AE, Vojta A, Pompe W, Lefevre MJ, Speck JS (1999) Phys Status Solidi A 172:225CrossRefGoogle Scholar
  9. 9.
    Pompe W, Gong X, Suo Z, Speck JS (1993) J Appl Phys 74:6012CrossRefGoogle Scholar
  10. 10.
    Kwak BS, Erbil A, Budai JD, Chisholm MF, Boatner LA, Wilkens BJ (1994) Phys Rev B 49:14865CrossRefGoogle Scholar
  11. 11.
    Nair JP, Stavitski N, Zon I, Gartsman K, Lubomirsky I, Roytburd AL (2002) Europhys Lett 60:782CrossRefGoogle Scholar
  12. 12.
    Saad MM, Baxter P, Schilling A, Adams T, Zhu X, Bowman RM, Gregg JM, Zubko P, Morrison FD, Scott JF (2005) J Phys I 128:63Google Scholar
  13. 13.
    Lyahovitskaya V, Feldman Y, Zon I, Wachtel E, Lubomirsky I, Roytburd AL (2005) Adv Mater 17:1956CrossRefGoogle Scholar
  14. 14.
    Lubomirsky I (2007) Phys Chem Chem Phys 9:3701CrossRefGoogle Scholar
  15. 15.
    Yvry Y, Lyahovitskaya V, Zon I, Lubomirsky I, Wachtel E, Roytburd AL (2007) Appl Phys Lett 90:172905CrossRefGoogle Scholar
  16. 16.
    Ouyang J, Slusker J, Levin I, Kim DM, Eom CB, Ramesh R, Roytburd AL (2007) Adv Funct Mater 17:2094CrossRefGoogle Scholar
  17. 17.
    Fu HX, Cohen RE (2000) Nature 403:281CrossRefGoogle Scholar
  18. 18.
    Damjanovic D, Budimir M, Davis M, Setter N (2006) J Mater Sci 41:65. doi: https://doi.org/10.1007/s10853-005-5925-5 CrossRefGoogle Scholar
  19. 19.
    Krainyk GG, Otko AI (1989) Izv Akad Nauk SSSR Ser Fizich 53:1407Google Scholar
  20. 20.
    Roytburd A, Wuttig M, Zhukovskiy I (1992) Scripta Metall Mater 27:1343CrossRefGoogle Scholar
  21. 21.
    Jona F, Shirane G (1998) Ferroelectric crystals. Dover Publications, New YorkGoogle Scholar
  22. 22.
    Johnston AR (1971) J Appl Phys 42:3501CrossRefGoogle Scholar
  23. 23.
    Kossoy A, Feldman Y, Korobko R, Wachtel E, Lubomirsky I, Maier J (2009) Adv Funct Mater 19:634CrossRefGoogle Scholar
  24. 24.
    Ebralidze I, Lyahovitskaya V, Zon I, Wachtel E, Lubomirsky I (2005) J Mater Chem 15:4258CrossRefGoogle Scholar
  25. 25.
    Lawless WN, DeVries RC (1964) J Appl Phys 35:2638CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Nathan Suleimanov
    • 1
  • Alla Milner
    • 1
  • Ilijya Zon
    • 1
  • Alexander Roytburd
    • 2
  • Igor Lubomirsky
    • 1
    Email author
  1. 1.Department of Materials and InterfacesWeizmann Institute of ScienceRehovotIsrael
  2. 2.Department of Materials and Nuclear EngineeringUniversity of MarylandCollege ParkUSA

Personalised recommendations