Advertisement

Journal of Materials Science

, Volume 44, Issue 16, pp 4303–4307 | Cite as

Microstructure and mechanical properties of graphite fiber-reinforced high-purity aluminum matrix composite

  • X. WangEmail author
  • G. Q. Chen
  • B. Li
  • G. H. Wu
  • D. M. Jiang
Article

Abstract

Industrial pure aluminum (0.5 wt% impurity elements) was utilized in many investigations of aluminum matrix composites at home and abroad. However, impurity elements in industrial pure aluminum may influence the interface during fabrication of composite at high temperature. Thereby, it is necessary to use high-purity aluminum (impurity elements less than 0.01%) as matrix to enable study the interface reaction between reinforcement and matrix. In this study, stretches of brittle Al4C3 at the fiber/matrix interfaces in Grf/Al composite were observed. The fracture surface of the composite after tensile and bending tests was flat with no fiber pull-out, which revealed characteristic of brittle fracture. This was related to Al4C3, as this brittle phase may break before the fiber during loading and become a crack initiation point, while the corresponding crack may propagate in the fiber and the surrounding aluminum matrix, finally resulting in low stress fracture of composites.

Keywords

Carbon Fiber Aluminum Matrix Composite Apparent Porosity Fiber Failure Aluminum Carbide 

References

  1. 1.
    Yang HN, Gu MY, Jiang WJ, Zhang GD (1996) J Mater Sci 31:1903. doi: https://doi.org/10.1007/BF00372206 CrossRefGoogle Scholar
  2. 2.
    Etter T, Schulz P, Weber M, Metz J, WimmlerI M, LÖffer JF, Uggowitzer PP (2007) Mater Sci Eng A 448:1CrossRefGoogle Scholar
  3. 3.
    Asthana R (1998) J Mater Sci 33:1679. doi: https://doi.org/10.1023/A:1004308027679 CrossRefGoogle Scholar
  4. 4.
    Asthana R (1998) J Mater Sci 33:1959. doi: https://doi.org/10.1023/A:1004334228105 CrossRefGoogle Scholar
  5. 5.
    Cheng HM, Kitahar AA, Akiyama S, Kobayashi K, Uchiyama Y, Zhou BL (1994) J Mater Sci 29:4342. doi: https://doi.org/10.1007/BF00414221 CrossRefGoogle Scholar
  6. 6.
    Diwanji AP, Hall IW (1992) J Mater Sci 27:2093. doi: https://doi.org/10.1007/BF01117922 CrossRefGoogle Scholar
  7. 7.
    Joshua P, Ashkenazi D, Ganor M (2000) Mater Sci Eng A 281:239CrossRefGoogle Scholar
  8. 8.
    Chen XQ, Hu GX (1988) In: Proceedings of interfaces in polymer, ceramic and metal matrix composites, Elsevier, New York, p 381Google Scholar
  9. 9.
    Qiong L, Gou DZ, Blucher JT, Cornie JA (1990) In: Proceedings of the international conference on composites interfaces (ICCI-III), Elsevier, New York, p 130Google Scholar
  10. 10.
    Scottv D, Trumper RL, Yang M (1991) Compos Sci Technol 42:251CrossRefGoogle Scholar
  11. 11.
    Portnoi KI, Timofeeva NI, Zabolotskii AA, Sakovich VN, Trefilov BF, Levinskayam KH, Polyak NN (1981) Powder Metall Met Ceram 20:116Google Scholar
  12. 12.
    Aikin RM, Christodoulou L (1991) Scr Metall Mater 25:9CrossRefGoogle Scholar
  13. 13.
    Taya M, Lulay KE, Loyd DJ (1991) Acta Metall Mater 39:73CrossRefGoogle Scholar
  14. 14.
    Arsenault RJ, Wang L, Feng CR (1991) Acta Metall Mater 39:47CrossRefGoogle Scholar
  15. 15.
    Miller WS, Humphreys FJ (1991) Scr Metall Mater 25:33CrossRefGoogle Scholar
  16. 16.
    Arsenault RJ (1984) Mater Sci Eng 64:171CrossRefGoogle Scholar
  17. 17.
    Li SH, Chao CG (2004) Metall Mater Trans A 35:2153CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • X. Wang
    • 1
    Email author
  • G. Q. Chen
    • 1
  • B. Li
    • 1
  • G. H. Wu
    • 1
  • D. M. Jiang
    • 1
  1. 1.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations