Advertisement

Journal of Materials Science

, Volume 44, Issue 16, pp 4482–4486 | Cite as

Effect of additive composition on microstructure and strength of porous silicon carbide ceramics

  • Jung-Hye Eom
  • Young-Wook KimEmail author
Letter

Porous silicon carbide (SiC) ceramics have many potential applications due to their unique properties, which include high temperature stability, chemical stability, excellent abrasion resistance, high thermal shock resistance, high specific strength, and controlled permeability [1, 2, 3, 4, 5, 6, 7, 8, 9]. For example, SiC ceramics can be used as catalytic supports, molten metal filters, membrane supports, gas-burner media, and light-weight structural materials for high-temperature applications.

It has frequently been observed that the composition of the sintering additives affects the microstructural development of sintered SiC ceramics. Al2O3–Y2O3 [10], Al2O3–Y2O3–CaO [11], and AlN–Y2O3 [12] additives generally lead to the growth of SiC platelet grains when the SiC is sintered or annealed at a temperature above 1950 °C. In contrast, Y–Mg–Si–Al oxynitrides [13], B4C–C [14], and AlN [15] additives lead to equiaxed microstructures, regardless of the sintering temperature. Thus, the...

Keywords

Compressive Strength Y2O3 Flexural Strength Polysiloxane Carbothermal Reduction 

Notes

Acknowledgement

This study was supported by the Korea Science and Engineering Foundation (KOSEF) Grant (R01-2008-000-20057-0) funded by the Korea government (MEST).

References

  1. 1.
    Bao X, Nangrejo MR, Edirisinghe MJ (1999) J Mater Sci 34:2495. doi: https://doi.org/10.1023/A:1004666326039 CrossRefGoogle Scholar
  2. 2.
    Zhu X, Jiang D, Tan S (2002) Mater Sci Eng A 323:232CrossRefGoogle Scholar
  3. 3.
    Kitaoka S, Matsushima Y, Chen C, Awaji H (2004) J Am Ceram Soc 87(5):906CrossRefGoogle Scholar
  4. 4.
    Adler J (2005) Int J Appl Ceram Technol 2:429CrossRefGoogle Scholar
  5. 5.
    Fukushima M, Zhou Y, Miyazaki H, Yoshizawa Y, Hirao K, Iwamoto Y, Yamazaki S, Nagano T (2006) J Am Ceram Soc 89(5):1523CrossRefGoogle Scholar
  6. 6.
    Wach RA, Sugimoto M, Yoshikawa M (2007) J Am Ceram Soc 90(1):275CrossRefGoogle Scholar
  7. 7.
    YaO X, Tan S, Zhang X, Huang Z, Jiang D (2007) J Mater Sci 42:4960. doi: https://doi.org/10.1007/s10853-006-0473-1 CrossRefGoogle Scholar
  8. 8.
    Ding S, Zeng YP, Jiang D (2007) J Mater Sci 42:7171. doi: https://doi.org/10.1007/s10853-007-1577-y CrossRefGoogle Scholar
  9. 9.
    Zheng Y, Zheng Y, Wang R, Wei K (2008) J Mater Sci 43:5331. doi: https://doi.org/10.1007/s10853-008-2778-8 CrossRefGoogle Scholar
  10. 10.
    Sciti D, Bellosi A (2000) J Mater Sci 35:3849. doi: https://doi.org/10.1023/A:1004881430804 CrossRefGoogle Scholar
  11. 11.
    Lee JH, Kim DY, Kim YW (2006) J Eur Ceram Soc 26:1267CrossRefGoogle Scholar
  12. 12.
    Nader M, Aldinger F, Hoffmann MJ (1999) J Mater Sci 34:1197. doi: https://doi.org/10.1023/A:1004552704872 CrossRefGoogle Scholar
  13. 13.
    Kim YW, Mitomo M (1999) J Am Ceram Soc 82(10):2731CrossRefGoogle Scholar
  14. 14.
    Ray DA, Kaur S, Cutler RA, Shetty DK (2008) J Am Ceram Soc 91(7):2163CrossRefGoogle Scholar
  15. 15.
    Kim YW, Lee JG (1992) J Mater Sci 27:4746. doi: https://doi.org/10.1007/BF01166016 CrossRefGoogle Scholar
  16. 16.
    Chi W, Jiang D, Huang Z, Tan S (2004) Ceram Int 30:869CrossRefGoogle Scholar
  17. 17.
    Lee SH, Kim YW (2006) J Kor Ceram Soc 43(8):458CrossRefGoogle Scholar
  18. 18.
    Ma Y, Ma QS, Suo J, Chen ZH (2008) Ceram Int 34:253CrossRefGoogle Scholar
  19. 19.
    Eom JH, Kim YW, Song IH, Kim HD (2008) J Eur Ceram Soc 28:1029CrossRefGoogle Scholar
  20. 20.
    Chae SH, Kim YW (2009) J Mater Sci 44:1404. doi: https://doi.org/10.1007/s10853-009-3264-7 CrossRefGoogle Scholar
  21. 21.
    Narisawa M, Yasuda H, Mori R, Mabuchi H, Oka K, Kim YW (2008) J Ceram Soc Japan 116(1):121CrossRefGoogle Scholar
  22. 22.
    Eom JH, Kim YW, Song IH, Kim HD (2007) Mater Sci Eng A 464:129CrossRefGoogle Scholar
  23. 23.
    Kim YW, Eom JH, Wang C, Park CB (2008) J Am Ceram Soc 91(4):1361CrossRefGoogle Scholar
  24. 24.
    Kim YW, Lee JG (1995) J Mater Sci 30:1005. doi: https://doi.org/10.1007/BF01178437 CrossRefGoogle Scholar
  25. 25.
    Choi HJ, Lee JG (1995) J Mater Sci 30:1982. doi: https://doi.org/10.1007/BF00353022 CrossRefGoogle Scholar
  26. 26.
    Kim YW, Kim SH, Song IH, Kim HD, Park CB (2005) J Am Ceram Soc 88(10):2949CrossRefGoogle Scholar
  27. 27.
    Kim YW, Chun YS, Nishimura T, Mitomo M, Lee YH (2007) Acta Mater 55:727CrossRefGoogle Scholar
  28. 28.
    Kim JY, Kim YW, Mitomo M, Zhan GD, Lee JG (1999) J Am Ceram Soc 82(2):441CrossRefGoogle Scholar
  29. 29.
    Zhou Y, Hirao K, Toriyama M, Yamauchi Y, Kanzaki S (2001) J Am Ceram Soc 84:1642CrossRefGoogle Scholar
  30. 30.
    Becher PF, Sun EY, Hsueh CH, Alexander KB, Hwang SL, Waters SB, Westmoreland CG (1996) Acta Mater 44:3881CrossRefGoogle Scholar
  31. 31.
    Satet RL, Hoffmann MJ (2005) J Am Ceram Soc 88(9):2485CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringThe University of SeoulDongdaemun-guRepublic of Korea

Personalised recommendations