Advertisement

Journal of Materials Science

, Volume 44, Issue 19, pp 5127–5142 | Cite as

Dynamic magneto-electric multiferroics PZT/CFO multilayered nanostructure

  • N. Ortega
  • Ashok Kumar
  • Ram S. KatiyarEmail author
  • Carlos Rinaldi
Ferroelectrics

Abstract

Highly oriented PbZr0.53Ti0.47O3/CoFe2O4(PZT/CFO) multilayered nanostructures (MLNs) were grown on MgO substrate by pulsed laser ablation using La0.5Sr0.5CoO3 (LSCO) as conducting bottom electrode. The effect of various PZT/CFO (PC) sandwich configurations having three, five, and nine layers while maintaining total thickness of PZT and CFO be identical has been systematically investigated. X-ray diffraction (XRD) and micro-Raman spectra revealed the existence of pure PZT and CFO phases without any intermediate phase. Intact MLNs were observed by transmission electron microscopy (TEM) with little inter-diffusion near the interfaces at nano-metric scale without any impurity phase. Impedance spectroscopy, modulus spectroscopy, and conductivity spectroscopy were carry out over a wide range of temperatures (100–600 K) and frequencies (100 Hz–1 MHz) to investigate the grain and grain boundary effect on electrical properties of MLNs. Temperature dependent real dielectric permittivity and dielectric loss illustrated step-like behavior and relaxation peaks near the step-up characteristic, respectively. Cole–Cole plots indicate that most of the dielectric response came from the bulk (grain) MLNs below 300 K, whereas the grain boundary and the electrode–MLNs effects are prominent at elevated temperatures. The dielectric loss relaxation peak shifted to higher frequency side with increase in temperature, it was out of the experimental frequency window above 300 K. Our Cole–Cole fitting of dielectric loss spectra indicated marked deviation from the ideal Debye-type of relaxation, which is more at elevated temperature. Master modulus spectra supported the observation from the impedance spectra; it also indicated that the magnitude of the grain boundary compared to grain becomes more prominent with increase in number of layers. We have explained these electrical properties of MLNs by Maxwell–Wagner type contributions arising from the interfacial charge at the interface of the ML structures. Three different types of frequency dependent conduction processes were observed at elevated temperatures (>300 K), which fitted well with the double power law, \( \sigma \left( \omega \right) = \sigma \left( 0 \right) + A_{1} \omega^{{n_{1} }} + A_{2} \omega^{{n_{2} }} , \) indicating that the low frequency (<1 kHz) conductivity may be due to long-range ordering (frequency independent), mid frequency conductivity (<10 kHz) may be due to short-range hopping, and high frequency (<1 MHz) conduction due to the localized relaxation hopping mechanism. Ferroelectric polarization decreased slowly in reducing the temperature from 300 to 200 K, with complete collapse of polarization at ~100 K, but there was complete recovery of the polarization during heating, which was repeatable over many different experiments. At the same time, the temperature dependent remanent magnetization of the MLNs showed slow enhancement in the magnitude till 200 K with three-fold increase at 100 K compared to room temperature. This enhancement in remanent magnetization and decrease in remanent ferroelectric polarization on lowering the temperature indicate temperature dependent dynamic switching of ferroelectric polarization. The magnetic and ferroelectric properties of MLNs were quite different compared to individual layers suggesting its improper ferroelectric characteristics. The fatigue test showed almost 0–20% deterioration in polarization. Fatigue and strong temperature and frequency dependent magneto-electric coupling suggest MLNs utility for Dynamic Magneto-Electric Random Access Memory (DMERAM).

Keywords

Electric Modulus Space Charge Effect Ferroelectric Polarization Extrinsic Contribution Dielectric Loss Spectrum 

Notes

Acknowledgements

This work was supported in parts by DOE DE-FG02- 08ER46526, DoD-HIS W911NF-06-1-0030 and DEPSCoR W911NF-06-1-0183 grants. One of us (N. Ortega) was supported by a NSF-IFN-EPSCOR Fellowship.

References

  1. 1.
    Scott JF (2007) Science 315:954CrossRefGoogle Scholar
  2. 2.
    Spaldin NA, Fiebig M (2005) Science 309:391CrossRefGoogle Scholar
  3. 3.
    Eerenstein W, Mathur ND, Scott JF (2006) Nature 442:759CrossRefGoogle Scholar
  4. 4.
    Spaldin NA, Pickett WE (2003) J Solid State Chem 176:615CrossRefGoogle Scholar
  5. 5.
    Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV, Spaldin NA, Rabe KM, Wuttig M, Ramesh R (2003) Science 299(14):1719CrossRefGoogle Scholar
  6. 6.
    Ramesh R, Spaldin NA (2007) Nature 6:21CrossRefGoogle Scholar
  7. 7.
    Zheng H, Wang J, Loand SE, Ma Z, Mohaddes-Ardabili L, Zhao T, Salamanca-Riba L, Shinde SR, Ogale SB, Bai F, Viehland D, Jia Y, Schlom DG, Wuttig M, Roytburd A, Ramesh R (2004) Science 303:661CrossRefGoogle Scholar
  8. 8.
    Petrov VM, Srinivasan G, Laletsin U, Bichurin MI, Tuskov DS, Paddubnaya N (2007) Phys Rev B 75:174422CrossRefGoogle Scholar
  9. 9.
    Srinivasan G, Rasmussen ET, Gallegos J, Srinivasan R, Bokhan YI, Laletin VM (2001) Phys Rev B 64:214408CrossRefGoogle Scholar
  10. 10.
    Dong S, Li J-F, Viehland D (2006) J Mater Sci 41:97. doi: https://doi.org/10.1007/s10853-005-5930-8 CrossRefGoogle Scholar
  11. 11.
    Zhang JX, Dai JY, Lu W, Chan WHL (2009) J Mater Sci. doi:  https://doi.org/10.1007/s10853-009-3512-x CrossRefGoogle Scholar
  12. 12.
    Duan Ch-G, Jaswal SS, Tsymbal EY (2006) Phys Rev Lett 97:047201CrossRefGoogle Scholar
  13. 13.
    Niranjan M-K, Velev JP, Duan Ch-G, Jaswal SS, Tsymbal EY (2008) Phys Rev B 78:104405CrossRefGoogle Scholar
  14. 14.
    Zhou JP, He H, Shi Z, Nan CW (2006) Appl Phys Lett 88:013111CrossRefGoogle Scholar
  15. 15.
    Murugavel P, Singh MP, Prellier W, Mercey B, Simon Ch, Raveau B (2005) J Appl Phys 97:103914CrossRefGoogle Scholar
  16. 16.
    Ortega N, Bhattacharya P, Katiyar RS, Dutta P, Manivannan A, Seehra MS, Takeuchi I, Majumder SB (2006) J Appl Phys 100:126105CrossRefGoogle Scholar
  17. 17.
    Raymond O, Font R, Suarez-Almodovar N, Portelles J, Siqueiros JM (2005) J Appl Phys 97:084108CrossRefGoogle Scholar
  18. 18.
    Srinivas K, Sarah P, Suryanarayana SV (2003) Bull Mater Sci 26:2–274CrossRefGoogle Scholar
  19. 19.
    Ortega N, Kumar A, Bhattacharya P, Majumder SB, Katiyar RS (2008) Phy Rev B 77:014111CrossRefGoogle Scholar
  20. 20.
    Liu J, Duan Ch-G, Mei WN, Smith RW, Hardy JR (2005) J Appl Phys 98:093703CrossRefGoogle Scholar
  21. 21.
    Ni WQ, Zheng XH, Yu JC (2007) J Mater Sci 42:1037. doi: https://doi.org/10.1007/s10853-006-1431-7 CrossRefGoogle Scholar
  22. 22.
    Catalan G (2006) Appl Phys Lett 88:102902CrossRefGoogle Scholar
  23. 23.
    Catalan G, Scott JF (2007) Nature 448:E4. doi: https://doi.org/10.1038/nature06156 CrossRefGoogle Scholar
  24. 24.
    Catalan G, O`Neill D, Bowman RM, Gregg JM (2000) Appl Phys Lett 77:3078CrossRefGoogle Scholar
  25. 25.
    Ortega N, Kumar A, Katiyar RS, Scott JF (2007) Appl Phys Lett 91:102902CrossRefGoogle Scholar
  26. 26.
    Sinclair DC, Adams TB, Morrison FD, West AR (2002) Appl Phys Lett 80:2153CrossRefGoogle Scholar
  27. 27.
    Yang P, Carroll DL, Robert JB, Schwartz W (2002) Appl Phys Lett 81:4583CrossRefGoogle Scholar
  28. 28.
    Bousquet E, Dawber M, Stucki N, Lichtensteiger C, Hermet P, Gariglio S, Triscone J-M, Ghosez P (2008) Nature 452:732CrossRefGoogle Scholar
  29. 29.
    Kundys B, Simon Ch, Martin Ch (2008) Phys Rev B 77:172402CrossRefGoogle Scholar
  30. 30.
    Cole KS, Cole RH (1941) J Chem Phys 9:341CrossRefGoogle Scholar
  31. 31.
    Schmidt R, Eerenstein W, Winiecki T, Morrison FD, Midgley PA (2007) Phys Rev B 75:245111CrossRefGoogle Scholar
  32. 32.
    Jiang AQ, Scott JF, Dawber M, Wang C (2002) J Appl Phys 92:6756CrossRefGoogle Scholar
  33. 33.
    Liu J, Duan Ch-G, Yin W-G, Mei WN, Smith RW, Hardy JR (2004) Phys Rev B 70:144106CrossRefGoogle Scholar
  34. 34.
    Victor P, Bhattacharyya S, Krupanidhy SB (2003) J Appl Phys 94:5135CrossRefGoogle Scholar
  35. 35.
    Macedo PB, Moynihan CT, Bose R (1972) Phys Chem Glasses 13:171Google Scholar
  36. 36.
    Provenzano V, Boesch LP, Volterra V, Macedo PB, Moynihan CT (1972) J Am Ceram Soc 55:492CrossRefGoogle Scholar
  37. 37.
    Kohlrausch R (1847) Ann Phys. (Leipzig) 12:393Google Scholar
  38. 38.
    Williams G, Watts DC (1970) Trans Faraday Soc 66:80CrossRefGoogle Scholar
  39. 39.
    Moynihan CT, Boesch LP, Laberge NL (1973) Phys Chem Glasses 14:122Google Scholar
  40. 40.
    Baskaran N (2002) J Appl Phys 92:825CrossRefGoogle Scholar
  41. 41.
    Patel HK, Martin SW (1992) Phys Rev B 45:10292CrossRefGoogle Scholar
  42. 42.
    Ngai KL, Greaves GN, Moynihan CT (1998) Phys Rev Lett 80:1018CrossRefGoogle Scholar
  43. 43.
    Funke K (1993) Prog Solid State Chem 22:111CrossRefGoogle Scholar
  44. 44.
    Jonscher AK (1977) Nature 264:673CrossRefGoogle Scholar
  45. 45.
    Murugaraj R (2007) J Mater Sci 42:10065. doi: https://doi.org/10.1007/s10853-007-2052-5 CrossRefGoogle Scholar
  46. 46.
    Almond AP, West AR, Grant RJ (1982) Solid State Commun 44:277CrossRefGoogle Scholar
  47. 47.
    Pelaiz-Barramco A, Gutierrez-Amador MP, Huanosta A, Valenzuela R (1998) Appl Phys Lett 73:2039CrossRefGoogle Scholar
  48. 48.
    Calderon MJ, Brey L, Guinea F (1999) Phys Rev B 60:6698CrossRefGoogle Scholar
  49. 49.
    Kimura T, Kawamoto S, Yamada I, Azuma M, Takano M, Tokura Y (2003) Phys Rev B 67:180401 (R)CrossRefGoogle Scholar
  50. 50.
    Yang Y, Liu JM, Huang HB, Zou WQ, Bao P, Liu ZG (2004) Phys Rev B 70:132101CrossRefGoogle Scholar
  51. 51.
    Al-Shareef HN, Kingon AI, Chen X, Bellur KR, Auciello O (1994) J Mater Res 9:2968CrossRefGoogle Scholar
  52. 52.
    Yoo IK, Desu SB (1992) Mater Sci Eng B 13:319CrossRefGoogle Scholar
  53. 53.
    Warren WL, Dimos D, Tuttle BA, Nasby RD, Pike GE (1994) Appl Phys Lett 65:1018CrossRefGoogle Scholar
  54. 54.
    Ramesh R, Chan WK, Wilkens B, Gilchrist H, Sands T, Tarascon JM, Keramidas VG, Fork DK, Lee J, Safari A (1992) Appl Phys Lett 61:1537CrossRefGoogle Scholar
  55. 55.
    Dat R, Lichtenwalner DJ, Auciello O, Kingon AI (1994) Appl Phys Lett 64:2673CrossRefGoogle Scholar
  56. 56.
    Bao D, Wakiya N, Shinozaki K, Mizutani N (2002) J Phys D Appl Phys 35:L1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • N. Ortega
    • 1
  • Ashok Kumar
    • 1
  • Ram S. Katiyar
    • 1
    Email author
  • Carlos Rinaldi
    • 2
  1. 1.Department of Physics and Institute for Functional NanomaterialsUniversity of Puerto RicoSan JuanUSA
  2. 2.Department of Chemical Engineering and Institute for Functional NanomaterialsUniversity of Puerto RicoMayagüezUSA

Personalised recommendations