Journal of Materials Science

, Volume 44, Issue 24, pp 6470–6483 | Cite as

Transformation of microporous titanium glycolate nanorods into mesoporous anatase titania nanorods by hot water treatment

  • Srinivasan Priya
  • Jacques Robichaud
  • Marie-Claude Méthot
  • Subramanian Balaji
  • James M. Ehrman
  • Bao-Lian Su
  • Yahia DjaouedEmail author
Mesostructured Materials


High surface area titanium glycolate microporous multi-faceted nanorods were synthesized from the reaction of titanium alkoxides (Ti(OEt)4, Ti(OiPr)4, or Ti(OnBu)4) with ethylene glycol, using a sol–gel reflux method. The specific surface area of the as-synthesized titanium glycolate nanorods obtained from Ti(OEt)4 is ~480 m2/g. A hot water treatment at 90 °C for 1 h transformed the titanium glycolate microporous nanorods into mesoporous anatase TiO2 nanorods. The shape of the nanorods was conserved after hot water treatment and the microporous to mesoporous transformation took place without significant change in the surface area (477 m2/g). Micro Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, solid state NMR, and nitrogen adsorption/desorption were used to characterize the samples. As a demonstration of potential applications, the thus formed mesoporous anatase TiO2 nanorods were tested for their photocatalytic efficiency in the degradation of crystal violet, and a photodegradation mechanism is proposed.


TiO2 Crystal Violet TiO2 Nanorods Titanium Glycolate Titania Nanofibers 



The financial support of the Research Assistantships Initiative of New Brunswick Innovation Fund (NBIF), the Atlantic Innovation Fund (AIF–Round II), and National Science and Engineering Research Council (NSERC) of Canada is gratefully acknowledged. We thank Dr. Louise Weaver (Microscopy Microanalysis Facility, University of New Brunswick, Fredericton, NB, Canada) for the TEM measurements, and Zoulika Hadj—Sadok (Laboratoire de Chimie des matériaux inorganiques—FUNDP, Namur, Belgique) for BET and XRD measurements. We are also thankful to Dr. Ulrike Werner-Zwanziger, Senior NMR Spectroscopist (Atlantic Magnetic Resonance Center, Department of chemistry, Dalhousie University, Halifax) for the NMR spectra.


  1. 1.
    O’Regan B, Gratzel M (1991) Nature 353:737CrossRefGoogle Scholar
  2. 2.
    Zhang H, Li GR, An LP, Yan TY, Gao XP, Zhu HY (2007) J Phys Chem 111:6143Google Scholar
  3. 3.
    Djaoued Y, Thibodeau M, Robichaud J, Balaji S, Priya S, Tchoukanova N, Bates SS (2008) J Photochem Photobiol A Chem 193:271CrossRefGoogle Scholar
  4. 4.
    Balaji S, Albert A-S, Djaoued Y, Brüning R (2009) J Raman Spectrosc 40:92CrossRefGoogle Scholar
  5. 5.
    Quan X, Ruan X, Zhao H, Chen S, Zhao Y (2007) Environ Pollut 147:409CrossRefGoogle Scholar
  6. 6.
    Li J, Ma W, Chen C, Zhao J, Zhu H, Gao X (2007) J Mol Catal A Chem 261:131CrossRefGoogle Scholar
  7. 7.
    Zhu H, Gao X, Lan Y, Song D, Xi Y, Zhao J (2004) J Am Chem Soc 126:8381Google Scholar
  8. 8.
    Wang D, Yu R, Kumuda N, Kinomura N (1999) Chem Mater 11:2008CrossRefGoogle Scholar
  9. 9.
    Wang D, Yu R, Chen Y, Kumuda N, Kinomura N, Takano M (2004) Solid State Ion 172:101CrossRefGoogle Scholar
  10. 10.
    Jiang X, Wang Y, Herricks T, Xia Y (2004) J Mater Chem 14:695CrossRefGoogle Scholar
  11. 11.
    Yu HK, Eun TH, Yi G-R, Yang S-M (2007) J Colloid Interface Sci 316:175CrossRefGoogle Scholar
  12. 12.
    Yu JG, Yu JC, Leung MKP, Ho WK, Cheng B, Zhao XJ, Zhao JC (2003) J Catal 217:69Google Scholar
  13. 13.
    Bavykin DV, Lapkin AA, Plucinski PK, Friedrich JM, Walsh FC (2005) J Catal 235:10CrossRefGoogle Scholar
  14. 14.
    Yu JC, Yu JG, Zhao JC (2002) Appl Catal B 36:31CrossRefGoogle Scholar
  15. 15.
    Herrmann JM (1999) Catal Today 53:115CrossRefGoogle Scholar
  16. 16.
    Cullity BD (1959) Elements of X-ray diffraction. Addison-Wesley Publishing, Reading, MAGoogle Scholar
  17. 17.
    Balaji S, Djaoued Y, Robichaud J (2006) J Raman Spectrosc 24:247Google Scholar
  18. 18.
    Djaoued Y, Badilescu S, Ashrit PV, Bersani D, Lottici PP, Brüning R (2002) J Sol-Gel Sci Technol 24:254Google Scholar
  19. 19.
    Ohsaka T, Izumi F, Fujiki Y (1978) J Raman Spectrosc 7:321CrossRefGoogle Scholar
  20. 20.
    Scott RWJ, Coombs N, Ozin GA (2003) J Mater Chem 13:969CrossRefGoogle Scholar
  21. 21.
    Barroso-Bujans F, Martinez R, Ortiz P (2003) J Appl Polym Sci 88:302CrossRefGoogle Scholar
  22. 22.
    Zhang D, Qi L (2005) Chem Commun 2735Google Scholar
  23. 23.
    Chae W-S, Lee S-W, Kim Y-R (2005) Chem Mater 17:3072CrossRefGoogle Scholar
  24. 24.
    Yu H, Yu J, Cheng B, Lin J (2007) J Hazard Mater 147:581CrossRefGoogle Scholar
  25. 25.
    Wang D, Yu R, Kumada N, Kinomura N (1999) Chem Mater 11:220Google Scholar
  26. 26.
    Gröhn F, Bauer BJ, Kim G, Amis E (2001) J Polym Mater Sci Eng 84:78Google Scholar
  27. 27.
    Chen C-C, Fan H-J, Yang C-Y, Jan J-L, Lin H-D, Lu C-S (2006) J Photochem Photobiol A Chem 184:147CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Srinivasan Priya
    • 1
  • Jacques Robichaud
    • 1
  • Marie-Claude Méthot
    • 2
  • Subramanian Balaji
    • 1
  • James M. Ehrman
    • 3
  • Bao-Lian Su
    • 4
  • Yahia Djaoued
    • 1
    Email author
  1. 1.Laboratoire de Micro-spectroscopies Raman et FTIRUniversité de Moncton–Campus de ShippaganShippaganCanada
  2. 2.Institut de recherche sur les zones côtièresShippaganCanada
  3. 3.Digital Microscopy FacilityMount Allison UniversitySackvilleCanada
  4. 4.Laboratoire de Chimie des Matériaux InorganiquesThe University of Namur (FUNDP)NamurBelgium

Personalised recommendations