Journal of Materials Science

, Volume 44, Issue 24, pp 6754–6763 | Cite as

Phosphorus and nitrogen co-doped titania photocatalysts with a hierarchical meso-/macroporous structure

  • Gao-Song Shao
  • Tian-Yi Ma
  • Xue-Jun Zhang
  • Tie-Zhen Ren
  • Zhong-Yong YuanEmail author
Mesostructured Materials


Visible light-active phosphorus and nitrogen co-doped meso-/macroporous titania materials were prepared by a simple two-step approach of the direct phosphation with the use of phosphoric acid solution and the succedent nitridation with the use of the urea solution. The prepared materials were characterized by UV–vis, solid-state 31P MAS NMR, FT-IR, XPS, XRD, SEM, TEM, and N2 adsorption analysis. Direct synthesis of phosphorus-doped meso-/macroporous titania materials could inhibit the formation of brookite phase and increase the surface area significantly, resulting in the hierarchical porous framework of nanocrystalline anatase phase with enhanced thermal stability and large porosity, and these features retained during the subsequent nitridation. The incorporation of P and N in the anatase titania lattice in the form of O–Ti–N, O–P–N, and Ti–O–P linkages was evidenced, and the extension of the absorption edges into the visible region and the corresponding narrowing of band gaps were observed in these N and P co-doped meso-/macroporous titanias, giving a higher photocatalytic activity in the degradation of Rhodamine B dye under visible-light irradiation than the samples doped with only N or P. The beneficial effect of hierarchical meso-/macroporous structure is also examined.


Photocatalytic Activity Pure TiO2 Phosphoric Acid Solution Macroporous Structure Nitridation Temperature 



This work was supported by the National Natural Science Foundation of China (20473041, 20673060), the National Basic Research Program of China (2009CB623502), the Specialized Research Fund for the Doctoral Program of Higher Education (20070055014), the Natural Science Foundation of Tianjin (08JCZDJC21500), the Chinese-Bulgarian Scientific and Technological Cooperation Project, the Fund from Hebei Provincial Department of Education (2007313), the Program for New Century Excellent Talents in University (NCET-06-0215), and Nankai University.


  1. 1.
    Chatti R, Rayalu SS, Dubey N, Labhsetwar N, Devotta S (2007) Sol Energy Mater Sol Cells 91:180CrossRefGoogle Scholar
  2. 2.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Tage Y (2001) Science 293:269CrossRefGoogle Scholar
  3. 3.
    Kasahara A, Nukumizu K, Hitoki G, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2002) J Phys Chem A 106:6750CrossRefGoogle Scholar
  4. 4.
    Sakthivel S, Janczarek M, Kisch H (2004) J Phys Chem B 108:19384CrossRefGoogle Scholar
  5. 5.
    Ohno T, Miyamoto Z, Nishijima K, Kanemitsu H, Feng X (2006) Appl Catal A Gen 302:62CrossRefGoogle Scholar
  6. 6.
    Nakano Y, Morikawa T, Ohwaki T, Taga Y (2006) Physica B 376–377:823CrossRefGoogle Scholar
  7. 7.
    Ghicov A, Schmidt B, Kunze J, Schmuki P (2007) Chem Phys Lett 433:323CrossRefGoogle Scholar
  8. 8.
    Shen M, Wu Z, Huang H, Du Y, Yang P (2006) Mater Lett 60:693CrossRefGoogle Scholar
  9. 9.
    Yu JC, Zhang L, Zheng Z, Zhao J (2003) Chem Mater 15:2280CrossRefGoogle Scholar
  10. 10.
    Körösi L, Papp S, Bertóti I, Dékány I (2007) Chem Mater 19:4811CrossRefGoogle Scholar
  11. 11.
    Shi Q, Yang D, Jiang Z, Li J (2006) J Mol Catal B Enzym 43:44CrossRefGoogle Scholar
  12. 12.
    Lin L, Lin W, Xie JL, Zhu YX, Zhao BY, Xie YC (2007) Appl Catal B Environ 75:52CrossRefGoogle Scholar
  13. 13.
    Lin L, Zheng RY, Xie JL, Zhu YX, Xie YC (2007) Appl Catal B Environ 76:196CrossRefGoogle Scholar
  14. 14.
    Luo H, Wang C, Yan Y (2003) Chem Mater 15:3841CrossRefGoogle Scholar
  15. 15.
    Peng T, Zhao D, Dai K, Shi W, Hirao K (2005) J Phys Chem B 109:4947CrossRefGoogle Scholar
  16. 16.
    Sheng Q, Cong Y, Yuan S, Zhang J, Anpo M (2006) Microporous Mesoporous Mater 95:220CrossRefGoogle Scholar
  17. 17.
    Hong XT, Wang ZP, Cai WM, Lu F, Zhang J, Yang YZ, Ma N, Liu YJ (2005) Chem Mater 17:1548CrossRefGoogle Scholar
  18. 18.
    Chen C, Li X, Ma W, Zhao J, Hidaka H, Serpone N (2002) J Phys Chem B 106:318CrossRefGoogle Scholar
  19. 19.
    Sakthivel S, Kisch H (2003) ChemPhysChem 4:487CrossRefGoogle Scholar
  20. 20.
    Yu JC, Zhang L, Yu J (2002) Chem Mater 14:4647CrossRefGoogle Scholar
  21. 21.
    Yu JC, Ho W, Yu JG, Yip H, Wong PK, Zhao JC (2005) Environ Sci Technol 39:1175CrossRefGoogle Scholar
  22. 22.
    Yu J, Zhang L, Cheng B, Su Y (2007) J Phys Chem C 111:10582CrossRefGoogle Scholar
  23. 23.
    Yuan ZY, Su BL (2006) J Mater Chem 16:663CrossRefGoogle Scholar
  24. 24.
    Wang X, Yu JC, Ho C, Hou Y, Fu X (2005) Langmuir 21:2552CrossRefGoogle Scholar
  25. 25.
    Shao G-S, Zhang X-J, Yuan Z-Y (2008) Appl Catal B Environ 82:208CrossRefGoogle Scholar
  26. 26.
    Collins A, Carriazo D, Davis SA, Mann S (2004) Chem Commun 568–569Google Scholar
  27. 27.
    Ren TZ, Yuan ZY, Su SL (2004) Chem Commun 2730–2731Google Scholar
  28. 28.
    Deng W, Shanks BH (2005) Chem Mater 17:3092CrossRefGoogle Scholar
  29. 29.
    Leonard A, Su BL (2004) Chem Commun 14:1674CrossRefGoogle Scholar
  30. 30.
    Yuan ZY, Ren TZ, Azioune A, Pireaux JJ, Su BL (2006) Chem Mater 18:1753CrossRefGoogle Scholar
  31. 31.
    Ren TZ, Yuan ZY, Azioune A, Pireaux JJ, Su BL (2006) Langmuir 22:3886CrossRefGoogle Scholar
  32. 32.
    Kruk M, Jaroniec M (2001) Chem Mater 13:3169CrossRefGoogle Scholar
  33. 33.
    Xu YH, Chen HR, Zeng ZX, Lei B (2006) Appl Surf Sci 252:8565CrossRefGoogle Scholar
  34. 34.
    Klug HP, Alexander LE (1974) X-ray diffraction procedure for polycrystalline and amorphous materials, 2nd edn. Wiley, New YorkGoogle Scholar
  35. 35.
    Soler-Illia GJAA, Louis A, Sanchez C (2002) Chem Mater 14:750CrossRefGoogle Scholar
  36. 36.
    Ding Z, Lu GQ, Greenfield PF (2000) J Phys Chem B 104:4815CrossRefGoogle Scholar
  37. 37.
    Samantaray SK, Parida K (2001) Appl Catal A Gen 220:9CrossRefGoogle Scholar
  38. 38.
    Bhaumik A, Inagaki S (2001) J Am Chem Soc 123:691CrossRefGoogle Scholar
  39. 39.
    Ramqvist L, Hamrin K, Johansson G, Fahlmann A, Nordling C (1969) J Phys Chem Solids 30:1835CrossRefGoogle Scholar
  40. 40.
    Cong Y, Zhang J, Chen F, Anpo M (2007) J Phys Chem C 111:6976CrossRefGoogle Scholar
  41. 41.
    Saha NC, Tompkins HG (1992) J Appl Phys 72:3072CrossRefGoogle Scholar
  42. 42.
    György E, Pérez del Pino A, Serra P, Morenza JL (2003) Surf Coat Technol 173:265CrossRefGoogle Scholar
  43. 43.
    Battiston GA, Gerbasi R, Gregori A, Porchia M, Cattarin S, Rizzi GA (2000) Thin Solid Films 371:126CrossRefGoogle Scholar
  44. 44.
    Splinter SJ, Rofagha R, Mcintyre NS, Erb U (1996) Surf Interface Anal 24:181CrossRefGoogle Scholar
  45. 45.
    Baunack S, Oswald S, Scharnweber D (1998) Surf Interface Anal 26:471CrossRefGoogle Scholar
  46. 46.
    Ohno T, Mitsui T, Matsumura M (2003) Chem Lett 32:364CrossRefGoogle Scholar
  47. 47.
    Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M (2004) Appl Catal A 265:115CrossRefGoogle Scholar
  48. 48.
    Kõrösi L, Dékány I (2006) Colloids Surf A 280:146CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Gao-Song Shao
    • 1
  • Tian-Yi Ma
    • 1
  • Xue-Jun Zhang
    • 1
  • Tie-Zhen Ren
    • 2
  • Zhong-Yong Yuan
    • 1
    Email author
  1. 1.Institute of New Catalytic Materials Science, Key Laboratory of Energy-Material Chemistry (Tianjin) & Engineering Research Center of Energy Storage and Conversion (Ministry of Education), College of ChemistryNankai UniversityTianjinPeople’s Republic of China
  2. 2.School of Chemical Engineering and TechnologyHebei University of TechnologyTianjinPeople’s Republic of China

Personalised recommendations