Journal of Materials Science

, Volume 44, Issue 19, pp 5197–5204 | Cite as

Imaging domains in BaTiO3 single crystal nanostructures: comparing information from transmission electron microscopy and piezo-force microscopy

  • L. McGilly
  • D. Byrne
  • C. Harnagea
  • A. Schilling
  • J. M. GreggEmail author


This article compares and contrasts information obtained, using transmission electron microscopy (TEM) and piezo-force microscopy (PFM), on domain configurations adopted in single crystal lamellae of BaTiO3, that had been cut directly from bulk using a focused ion beam microscope with top and bottom surfaces parallel to {100}pseudocubic. Both forms of imaging reveal domain walls parallel to {110}pseudocubic, consistent with sets of 90° domains with dipoles oriented parallel to the two <001>pseudocubic directions in the plane of the lamellae. However, the domain width was observed to be dramatically larger using PFM than it was using TEM. This suggests significant differences in the surface energy densities that drive the domain formation in the first place, that could relate to differences in the boundary conditions in the two modes of imaging (TEM samples are imaged under high vacuum, whereas PFM imaging was performed in air). Attempts were made to map local dipole orientations directly, using a form of ‘vector’ PFM. However, information inferred was largely inconsistent with the known crystallography of the samples, raising concern about the levels of care needed for accurate interpretation of PFM images.


Domain Wall BaTiO3 Scanning Transmission Electron Microscopy Stripe Domain Piezoresponse Force Microscopy 



The authors wish to acknowledge discussions and assistance from S. Kalinin and his research group at OakRidge National Labs, as well as Prof J. F. Scott and Dr G. Catalan from the University of Cambridge. Financial support from the UK funding agencies EPSRC and DEL is acknowledged.


  1. 1.
    International Technology Roadmap for Semiconductors (ITRS), 2006 Update (2006) p 23.
  2. 2.
    Naber RCG, Tanase C, Blom PWM, Gelinck GH, Marsman AW, Touwslager FJ, Setayesh S, De Leeuw DM (2005) Nat Mat 4:243CrossRefGoogle Scholar
  3. 3.
    Tokumitsu E, Fujii G, Ishiwara H (1999) Appl Phys Lett 75:575CrossRefGoogle Scholar
  4. 4.
    Landau L, Lifshitz E (1935) Phys Z Sowjetunion 8:153Google Scholar
  5. 5.
    Kittel C (1946) Phys Rev 70:965CrossRefGoogle Scholar
  6. 6.
    Roytburd AL (1976) Phys Status Solidi A 37:329CrossRefGoogle Scholar
  7. 7.
    Fong DD, Kolpak AM, Eastman JA, Streiffer SK, Fuoss PH, Stephenson GB, Thompson C, Kim DM, Choi KJ, Eom CB, Grinberg I, Rappe AM (2006) Phys Rev Lett 96:127601CrossRefGoogle Scholar
  8. 8.
    Schilling A, Adams TB, Bowman RM, Gregg JM, Catalan G, Scott JF (2006) Phys Rev B 74:024115CrossRefGoogle Scholar
  9. 9.
    Schilling A, Bowman RM, Catalan G, Scott JF, Gregg JM (2007) Nano Lett 7(12):3787CrossRefGoogle Scholar
  10. 10.
    Schilling A, Bowman RM, Gregg JM, Catalan G, Scott JF (2006) Appl Phys Lett 89:212902CrossRefGoogle Scholar
  11. 11.
    Catalan G, Schilling A, Scott JF, Gregg JM (2007) J Phys Condens Matter 19:132201CrossRefGoogle Scholar
  12. 12.
    Schilling A, Byrne D, Catalan G, Weber K, Genenko Y, Scott JF, Gregg JM (2009) Nano Lett (submitted)Google Scholar
  13. 13.
    Luk’yanchuk IA, Schilling A, Gregg JM, Catalan G, Scott JF (2009) Phys Rev B 79:144111CrossRefGoogle Scholar
  14. 14.
    Eng LM, Güntherodt HJ, Rosenman G, Skliar A, Oron M, Katz M, Eger D (1998) J Appl Phys 83:5973CrossRefGoogle Scholar
  15. 15.
    Rosen CZ, Hiremath BV, Newnham R (eds) (1992) Piezoelectricity. American Institute of Physics, Key Papers in Physics, No 5, 227Google Scholar
  16. 16.
    Kalinin SV, Rodriguez BJ, Jesse S, Shin J, Baddorf AP, Gupta P, Jain H, Gruverman A, Williams DB (2006) Microsc Microanal 12:206CrossRefGoogle Scholar
  17. 17.
    Eng LM, Guntherodt H-J, Schneider GA, Kopke U, Munoz Saldana J (1999) Appl Phys Lett 74:2CrossRefGoogle Scholar
  18. 18.
    Rodriguez BJ, Gruverman A, Kingon AI, Nemanich RJ, Cross JS (2004) J Appl Phys 95:4Google Scholar
  19. 19.
    Kalinin SV, Bonnell DA (2002) Phys Rev B 65:125408CrossRefGoogle Scholar
  20. 20.
    Kalinin SV, Karapetian E, Kachanov M (2004) Phys Rev B 70:184101CrossRefGoogle Scholar
  21. 21.
    Huey BD, Ramanujan C, Bobji M, Blendell J, White G, Szoszkiewicz R, Kulik A (2004) J Electroceram 13:287CrossRefGoogle Scholar
  22. 22.
    Saad MM, Baxter P, Bowman RM, Gregg JM, Morrison FD, Scott JF (2004) J Phys Condens Matter 16:L451CrossRefGoogle Scholar
  23. 23.
    Wang RV, Fong DD, Jiang F, Highland MJ, Fuoss PH, Thompson C, Kolpak AM, Eastman JA, Streiffer SK, Rappe AM, Stephenson GB (2009) Phys Rev Lett 102:047601CrossRefGoogle Scholar
  24. 24.
    Salehi-Khojin A et al (2009) J Sound Vib 322:1081. doi: CrossRefGoogle Scholar
  25. 25.
    Harnagea C, Martin F, Legare F, Pignolet A (in preparation)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • L. McGilly
    • 1
  • D. Byrne
    • 1
  • C. Harnagea
    • 2
  • A. Schilling
    • 1
  • J. M. Gregg
    • 1
    Email author
  1. 1.Centre for Nanostructured Media, School of Maths and PhysicsQueen’s University BelfastBelfastUK
  2. 2.University of Quebec, INRS Energy, Materials & TelecommunicationVarennesCanada

Personalised recommendations