Advertisement

Journal of Materials Science

, Volume 44, Issue 16, pp 4270–4278 | Cite as

Free-volume properties and toughening behavior of cyanate ester resin/carboxyl-randomized liquid butadiene-acrylonitrile rubber composites

  • Minfeng ZengEmail author
  • Xudong Sun
  • Xiandong Yao
  • Yun Wang
  • Mingzhu Zhang
  • Baoyi Wang
  • Chenze Qi
Article

Abstract

The toughness of cyanate ester resin (CE) matrix was improved significantly with addition of carboxyl-randomized liquid butadiene-acrylonitrile rubber (CRBN). The curing behavior of the system was studied by differential scanning calorimetric (DSC) and Fourier transform infrared spectrum (FTIR). The results showed that carboxyl groups on the CRBN chain had slight activation effect to CE curing reaction at the beginning of the cure process. Phase separation was the main toughening mechanism for CE/CRBN composites. The existence of micro-size pores induced by small amount of the low weight molecular part of CRBN might be another toughening mechanism. The toughening mechanism was proved powerfully from the aspect of free-volume using positron annihilation lifetime spectroscopy (PALS). PALS is qualitatively sensitive to the existence of pores induced by low molecular weight part of CRBN during curing process.

Keywords

Rubber Particle Rubber Content Cyanate Ester Rubber Phase Positron Annihilation Lifetime Spectroscopy 

Notes

Acknowledgements

This work is supported by National Nature Science Foundation of China (Grant number 10875079), and Nature Science Foundation of Zhejiang Province, China (Grant number Y4080448).

References

  1. 1.
    McGarry FJ (1996) In: Arends CB (ed) Polymer toughening. Marcel Dekker, New York, p 175Google Scholar
  2. 2.
    Huang Y, Hunston DL, Kinloch AJ, Keith RC (1993) Rubber toughened plastics, ACS advances in chemistry series 233. American Chemical Society, Washington, DC, p 1CrossRefGoogle Scholar
  3. 3.
    Hayes BS, Seferis JC (2001) Int SAMP Symp Exhib 46:1072Google Scholar
  4. 4.
    Hayes BS, Seferis JC, Parker GA (2000) Polym Eng Sci 40:1344CrossRefGoogle Scholar
  5. 5.
    Borrajo J, Riccardi CC, Williams RJJ, Cao ZQ, Pascault JP (1995) Polymer 36:3541CrossRefGoogle Scholar
  6. 6.
    Wang JL, Liang GZ, Zhao W, Lu SH, Yan HX (2006) Polym Eng Sci 46:581CrossRefGoogle Scholar
  7. 7.
    Hillermerier RW, Hayes BS, Seferis JC (1999) Polym Compos 20:155CrossRefGoogle Scholar
  8. 8.
    Cao Z, Mechin F, Pascault JP (1994) Polym Int 34:41CrossRefGoogle Scholar
  9. 9.
    Feng Y, Fang ZP, Gu AJ (2004) Polym Adv Technol 15:628CrossRefGoogle Scholar
  10. 10.
    Feng Y, Fang ZP, Gu AJ (1994) Polym Int 54:369CrossRefGoogle Scholar
  11. 11.
    Shi HH, Fang ZP, Gu AJ, Tong LF, Xu ZB (2007) J Appl Polym Sci 106:3098CrossRefGoogle Scholar
  12. 12.
    Ito K, Kobayashi Y (2003) Appl Phys Lett 82:654CrossRefGoogle Scholar
  13. 13.
    Hu YH, Qi CZ, Liu WM, Wang BY, Sun XD, Zheng HT (2003) J Appl Polym Sci 90:1507CrossRefGoogle Scholar
  14. 14.
    Jean YC (1990) Microchem J 42:72CrossRefGoogle Scholar
  15. 15.
    Pethrick Richard A (1997) Prog Polym Sci 22:1CrossRefGoogle Scholar
  16. 16.
    Tao SJ (1972) J Chem Phys 56(12):5499CrossRefGoogle Scholar
  17. 17.
    Nakanishi H, Wang SJ, Jean YC (1988) In: Sharma SC (ed) Positron annihilation in fluids. World Sci. Pub., Singapore, p 292Google Scholar
  18. 18.
    Zeng MF, Sun XD, Xiao HQ, Ji GZ, Jiang XW, Wang BY, Qi CZ (2008) Radiat Phys Chem 77:245CrossRefGoogle Scholar
  19. 19.
    Zeng MF, Sun XD, Yao XD, Ji GZ, Chen N, Wang BY, Qi CZ (2007) J Appl Polym Sci 106:1347CrossRefGoogle Scholar
  20. 20.
    Zeng MF, Sun XD, Wang Y, Zhang MZ, Shen YM, Wang BY, Qi CZ (2008) Polym Adv Technol 19:1664Google Scholar
  21. 21.
    Shimp DA, Hudock FA, Ising SJ (1988) Int SAMPE Symp Exhib 33:754Google Scholar
  22. 22.
    Gupta AM, Macosko CW (1991) Makromol Chem, Macromol Symp 45:105CrossRefGoogle Scholar
  23. 23.
    Yu DH, Wang B, Feng Y, Fang ZP (2006) J Appl Polym Sci 102:1509CrossRefGoogle Scholar
  24. 24.
    Liu LM, Fang PF, Zhang SP, Wang SJ (2005) Mater Chem Phys 92:361CrossRefGoogle Scholar
  25. 25.
    Zhang M, Fang PF, Zhang SP, Wang B, Wang SJ (2003) Radiat Phys Chem 68:565CrossRefGoogle Scholar
  26. 26.
    Wang B, Qi N, Gong W, Li XW, Zhen YP (2007) Radiat Phys Chem 76:146CrossRefGoogle Scholar
  27. 27.
    Qi CZ, Wang W, Wu YJ, Zhang SH, Wang HJ, Li HM, Wang TM, Yan FY (2000) J Polym Sci B: Polym Phys 38:435CrossRefGoogle Scholar
  28. 28.
    Wilkinson NJ, Duffy JA, Fretwell HM, Alam MA (1995) Phys Lett A 204:285CrossRefGoogle Scholar
  29. 29.
    Duffy JA, Alam MA (2000) Langmuir 16:9513CrossRefGoogle Scholar
  30. 30.
    Fabio LB, Thiago PA, Bluma GS (2003) Polymer 44:5811CrossRefGoogle Scholar
  31. 31.
    Bucknall CB (1977) Toughened plastics. Applied Science Publishers, London, p 188CrossRefGoogle Scholar
  32. 32.
    Bagheri R, Pearson RA (1996) Polymer 37:4529CrossRefGoogle Scholar
  33. 33.
    Bagheri R, Pearson RA (1995) Polymer 36:4883CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Minfeng Zeng
    • 1
    Email author
  • Xudong Sun
    • 1
  • Xiandong Yao
    • 1
  • Yun Wang
    • 1
  • Mingzhu Zhang
    • 1
  • Baoyi Wang
    • 2
  • Chenze Qi
    • 1
  1. 1.Institute of Applied ChemistryShaoxing UniversityShaoxingPeople’s Republic of China
  2. 2.Institute of High Energy PhysicsThe Chinese Academy of ScienceBeijingPeople’s Republic of China

Personalised recommendations