Journal of Materials Science

, Volume 44, Issue 24, pp 6531–6537 | Cite as

One pot synthesis of mesostructured non-silica oxides nanocrystallites

  • Hangrong Chen
  • Jina Yan
  • Zhengqing Ye
  • Liangxia Zhang
  • Jianhua Gao
  • Jianlin ShiEmail author
  • Dongsheng Yan
Mesostructured Materials


Some typical worm-like mesoporous non-silica oxides, titania, zirconia, and dopants-incorporated zirconia oxides, with homogeneous nanocrystalline framework and narrow pore-size distribution have been synthesized via a facile process templated from composite surfactant of a long chain poly block copolymer combined with non-ionic alkyl-PEO surfactant (Brij56) under the hydrothermal condition. Bi- or even multi-component zirconia-based composites with further addition of other oxide compositions can also be obtained with well-defined mesoporous structure and nanocrystalline framework. These mesostructured oxides/composite oxides show high surface area, well-crystallization framework, and high thermal stability. XRD, nitrogen adsorption analysis, TEM, and EDX were used for the structural characterizations. The use of non-ionic block-copolymer surfactant is believed to be responsible for the crystallization of mesoporous framework and high thermal stability at high temperature without structural collapse.


CeO2 Mesoporous Structure Brij56 Select Area Electron Diffraction Pattern Zirconium Sulfate 



We gratefully acknowledge the financial support from the National Natural Science Foundation of China with Contract 50872140, the State Scientific & Technological Supporting Project (2007BAJ03B01), and Shanghai standard project (08DZ05020000).


  1. 1.
    Scott BJ, Wirnsberger G, Stucky GD (2001) Chem Mater 13:3140CrossRefGoogle Scholar
  2. 2.
    Shi J, Hua Z, Zhang L (2004) J Mater Chem 14(5):795CrossRefGoogle Scholar
  3. 3.
    Trong On D, Desplantier-Giscard D, Danumah C, Kaliaguine S (2001) Appl Catal A Gen 222:299CrossRefGoogle Scholar
  4. 4.
    Dong X, Chen H, Zhao W, Li X, Shi J (2007) Chem Mater 19:3484CrossRefGoogle Scholar
  5. 5.
    Ying JY, Mehnert CP, Wong MS (1999) Angew Chem Int Ed 38:56CrossRefGoogle Scholar
  6. 6.
    Kim A, Bruinsma P, Chen Y, Wang L-Q, Liu J (1997) Chem Commun 161Google Scholar
  7. 7.
    Antonelli DM (1999) Adv Mater 11:487CrossRefGoogle Scholar
  8. 8.
    Antonelli DM (1999) Microporous Mesoporous Mater 30:315CrossRefGoogle Scholar
  9. 9.
    Chen SY, Jang LY, Cheng S (2006) J Phys Chem B 110(24):11761CrossRefGoogle Scholar
  10. 10.
    Ozawa M (1998) J Alloys Compd 275:886CrossRefGoogle Scholar
  11. 11.
    Gonzalez-Velasco JR, Gutierrez-Ortiz MA, Marc JL, Botas JA, Gonzalez-Marcos MP, Blanchard G (2003) Ind Eng Chem Res 42:311CrossRefGoogle Scholar
  12. 12.
    Fernández-García M, Martínez-Arias A, Iglesias-Juez A, Belver C, Hungría AB, Conesa JC, Soria J (2000) J Catal 194:385CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Hangrong Chen
    • 1
  • Jina Yan
    • 1
  • Zhengqing Ye
    • 1
  • Liangxia Zhang
    • 1
  • Jianhua Gao
    • 1
  • Jianlin Shi
    • 1
    Email author
  • Dongsheng Yan
    • 1
  1. 1.State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiChina

Personalised recommendations