Advertisement

Journal of Materials Science

, Volume 44, Issue 24, pp 6512–6518 | Cite as

Direct synthesis of Cr-MCM-48-like large pore mesoporous silica

  • Lingzhi Wang
  • Lei Wang
  • Jinlong Zhang
Mesostructured Materials

Abstract

Chromium-substituted MCM-48-like large pore mesoporous silica with average pore size up to 10 nm was directly synthesized by using P123 (EO20PO70EO20) as a template, n-butanol as an assistant, and chromic nitrate nonahydrate as a chromium source. The Cr species was doped by simply adjusting the pH of the synthesis system with ammonia from strong acid to nearly neutral after crystallization for 24 h. The Si/Cr ratios in the initial gel ranged from 10 to 80, and the actual weight percentage of Cr was analyzed by ICP. XRD pattern, high-resolution TEM, and N2 adsorption–desorption isotherm were employed to investigate the pore structure properties of these materials. The results showed that all the samples had Ia3d cubic structure and the pore channels were highly ordered. UV–vis, wide-angle XRD, and ESR spectra revealed that at lower Cr content (Si/Cr > 30), only Cr (VI) and Cr(V) species existed in the mesoporous framework, and at higher Cr content, Cr (III) species appeared.

Keywords

Mesoporous Material Acetate Salt Chromic Nitrate Ia3d Symmetry Average Unit Cell Parameter 

Notes

Acknowledgement

This study has been supported by the Shanghai Natural Science Foundation (08ZR1406100), Morning Light Plan of Shanghai Education Development Foundation (2007CG040), Innovation Plan of Shanghai Municipality for Introduction of Foreign Technology (07XI-046), National High Technology Research and Development Program of China (2007AA05Z326), National Basic Research of China(973 Program 2004CB719500), National Nature Science Foundation of China (20773039), the Research Fund for the Doctoral Program of Higher Education(20070251006), and the Ministry of Science and Technology of China (2006AA06Z379, 2007AA05Z303, 2006DFA52710).

References

  1. 1.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710CrossRefGoogle Scholar
  2. 2.
    Zhao DY, Feng JP, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548CrossRefGoogle Scholar
  3. 3.
    Liu XY, Tian BZ, Yu CZ, Gao F, Xie SH, Tu B, Che RC, Peng LM, Zhao DY (2002) Angew Chem Int Ed 41:3876CrossRefGoogle Scholar
  4. 4.
    Flodström K, Alfredsson V, Källrot N (2003) J Am Chem Soc 125:4402CrossRefGoogle Scholar
  5. 5.
    Kim TW, Kleitz F, Paul B, Ryoo R (2005) J Am Chem Soc 127:7601CrossRefGoogle Scholar
  6. 6.
    Chen D, Li Z, Yu C, Shi Y, Zhang Z, Tu B, Zhao DY (2005) Chem Mater 17:3228CrossRefGoogle Scholar
  7. 7.
    Chan YT, Lin HP, Mou CY, Liu ST (2002) Chem Commun 2878Google Scholar
  8. 8.
    Yue Y, Gideon A, Bonardet JL, Melosh N, D’Espinose JB, Fraissard J (1999) Chem Commun 1967Google Scholar
  9. 9.
    Han Y, Xiao FS, Wu S, Sun Y, Meng X, Li D, Lin S, Deng F, Ai X (2001) J Phy Chem B 105:7963CrossRefGoogle Scholar
  10. 10.
    Newalkar BL, Olanrewaju J, Komarneni S (2001) Chem Mater 13:552CrossRefGoogle Scholar
  11. 11.
    Zhang W, Lu Q, Han B, Li M, Xiu J, Ying P, Li C (2002) Chem Mater 14:3413CrossRefGoogle Scholar
  12. 12.
    Wu S, Han Y, Zou YC, Song JW, Zhao L, Di Y, Liu SZ, Xiao FS (2004) Chem Mater 16:486CrossRefGoogle Scholar
  13. 13.
    Luan Z, Bae JY, Kevan L (2000) Chem Mater 12:3202CrossRefGoogle Scholar
  14. 14.
    Wh Y, Chen YJ, Min L, Fang H, Yan ZY, Wang HL, Wang JQ (2006) J Mol Catal A Chemical 246:162CrossRefGoogle Scholar
  15. 15.
    Shao YF, Wang LZ, Zhang JL, Anpo M (2008) Micropor Mesopor Mater 109:271CrossRefGoogle Scholar
  16. 16.
    Hamdy MS, Mul G, Wei W, Anand R, Hanefeld U, Jansen JC, Moulijn JA (2005) Catal Today 110:264CrossRefGoogle Scholar
  17. 17.
    Wang YM, Wu ZY, Shi LY, Zhu JH (2005) Adv Mater 17:323CrossRefGoogle Scholar
  18. 18.
    Wang YM, Wu ZY, Wang HJ, Zhu JH (2006) Adv Funct Mater 16:2374CrossRefGoogle Scholar
  19. 19.
    Andersson M, Birkedal H, Franklin NR, Ostomel T, Boettcher S, Palmqvist Anders EC, Stucky GD (2005) Chem Mater 17:1409CrossRefGoogle Scholar
  20. 20.
    Marianne MC, Bazin D, Appay MD, Beaunier P, Davidson A (2004) Chem Mater 16:1813CrossRefGoogle Scholar
  21. 21.
    Wu ZY, Wang YM, Huang WW, Yang J, Wang HJ, Xu JH, Wei YL, Zhu JH (2007) Chem Mater 19:1613CrossRefGoogle Scholar
  22. 22.
    Santamaria-Gonzalez J, Merida-Robles J, Alcantara-Rodriguez M, Maireles-Torres P, Rodriguez-Castellon E, Jimenez-Lopez A (2000) Catal Lett 64:209CrossRefGoogle Scholar
  23. 23.
    Sakthivel A, Selvam P (2002) J Catal 211:134CrossRefGoogle Scholar
  24. 24.
    Takehira K, Ohishi Y, Shishido T, Kawabata T, Takaki K, Zhang Q, Wang Y (2004) J Catal 224:404CrossRefGoogle Scholar
  25. 25.
    Zhang L, Zhao Y, Dai H, He H, Au CT (2008) Catal Today 131:42CrossRefGoogle Scholar
  26. 26.
    Selvaraj M, Kawi S (2007) Chem Mater 19:509CrossRefGoogle Scholar
  27. 27.
    Wang Y, Ohishi Y, Shishido T, Zhang QH, Wang W, Guo Q, Wan HL, Takehira K (2003) J Catal 220:347CrossRefGoogle Scholar
  28. 28.
    Zhu ZD, Chang ZX, Kevan L (1999) J Phys Chem B 103:2680CrossRefGoogle Scholar
  29. 29.
    Weckhuysen BM, Wachs IE, Schoonheydt RA (1996) Chem Rev 96:3327CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Lab for Advanced Materials and Institute of Fine ChemicalsEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations