Journal of Materials Science

, Volume 44, Issue 24, pp 6663–6669 | Cite as

Mesoporous Ce0.8Zr0.2O2 solid solutions-supported CuO nanocatalysts for CO oxidation: a comparative study of preparation methods

  • Jian-Liang Cao
  • Qing-Fang Deng
  • Zhong-Yong YuanEmail author
Mesostructured Materials


Ce0.8Zr0.2O2 solid solutions were prepared by three different methods, namely, surfactant-assisted, co-precipitation, and sol–gel methods, and were used as supports of CuO nanocatalysts by the deposition-precipitation (DP) method. The prepared supports and catalysts were characterized by using XRD, N2 adsorption, TEM, and H2-TPR techniques. The influence of preparation methods on the low-temperature carbon monoxide oxidation activity of these CuO/Ce0.8Zr0.2O2 catalysts was investigated comparatively by using a microreactor-GC system. The catalyst prepared by surfactant-assisted method is more active for low-temperature CO oxidation than the ones prepared by the co-precipitation and sol–gel methods. The support and catalysts prepared by surfactant-assisted method possess mesoporous framework, nanoscale particle size, and high surface area, improving the synergistic effect between CuO species and support, which is beneficial for enhancing the catalytic performance of low-temperature CO oxidation.


CeO2 Copper Species ZrO2 Catalyst Support Copper Oxide Nanoscale Particle Size 



This work was supported by the National Natural Science Foundation of China (No. 20473041 and 20673060), the National Basic Research Program of China (No. 2009CB623502), the Specialized Research Fund for the Doctoral Program of Higher Education (20070055014), the Natural Science Foundation of Tianjin (08JCZDJC21500), the Program for New Century Excellent Talents in University (NCET-06-0215), and Nankai University.


  1. 1.
    Prasad R, Kennedy LA, Ruckenstein E (1984) Catal Rev Sci Eng 26:1CrossRefGoogle Scholar
  2. 2.
    Dwyer FG (1972) Catal Rev Sci Eng 6:261CrossRefGoogle Scholar
  3. 3.
    Zwinkels MFM, Järås SG, Menon PG, Griffin TA (1993) Catal Rev Sci Eng 35:319CrossRefGoogle Scholar
  4. 4.
    Kummer JT (1980) Prog Energy Combust Sci 6:177CrossRefGoogle Scholar
  5. 5.
    Cao J-L, Wang Y, Zhang T-Y, Wu S-H, Yuan Z-Y (2008) Appl Catal B 78:120CrossRefGoogle Scholar
  6. 6.
    Cao J-L, Wang Y, Yu X-L, Wang S-R, Wu S-H, Yuan Z-Y (2008) Appl Catal B 79:26CrossRefGoogle Scholar
  7. 7.
    Luo M-F, Ma J-M, Lu J-Q, Song Y-P, Wang Y-J (2007) J Catal 246:52CrossRefGoogle Scholar
  8. 8.
    Ma L, Luo MF, Chen SY (2003) Appl Catal A 242:151CrossRefGoogle Scholar
  9. 9.
    Jung CR, Han J, Nam SW, Lim T-H, Hong S-A, Lee H-I (2004) Catal Today 93–95:183CrossRefGoogle Scholar
  10. 10.
    Matias J, Fernando M, Betina S, Graciela B, Miguel L (2006) Chem Mater 18:1945CrossRefGoogle Scholar
  11. 11.
    Wang S-P, Zheng X-C, Wang X-Y, Wang S-R, Zhang S-M, Yu L-H, Huang W-P, Wu S-H (2005) Catal Lett 105:163CrossRefGoogle Scholar
  12. 12.
    Yu Yao YF, Kummer JT (1977) J Catal 46:388CrossRefGoogle Scholar
  13. 13.
    Boon AQM, Huisman HM, Geus JW (1992) J Mol Catal 75:293CrossRefGoogle Scholar
  14. 14.
    Ozkan US, Kueller RF, Moctezuma E (1990) Ind Eng Chem Res 29:1136CrossRefGoogle Scholar
  15. 15.
    Rajesh H, Ozkan US (1993) Ind Eng Chem Res 32:1622CrossRefGoogle Scholar
  16. 16.
    Avgouropoulos G, Papavasiliou J, Tabakova T, Idakiev V, Ioannides T (2006) Chem Eng J 124:41CrossRefGoogle Scholar
  17. 17.
    Huang J, Wang S, Zhao Y, Wang X, Wang S, Wu S, Zhang S, Huang W (2006) Catal Commun 7:1029CrossRefGoogle Scholar
  18. 18.
    Wang JA, Chen LF, Valenzuela MA, Montoya A, Salmoned J, Angel PD (2004) Appl Surf Sci 230:34CrossRefGoogle Scholar
  19. 19.
    Si R, Zhang Y-W, Xiao C-X, Li S-J, Lin B-X, Kou Y, Yan C-H (2004) Phys Chem Chem Phys 5:1056CrossRefGoogle Scholar
  20. 20.
    Daturi M, Finocchio E, Biinet C, Lavalley JC, Fally F, Perrichon V, Vidal H, Hickey N, Kaspar J (2000) J Phys Chem B 104:9186CrossRefGoogle Scholar
  21. 21.
    Masui T, Ozaki T, Machida K, Adachi G (2000) J Alloys Compds 303–304:49CrossRefGoogle Scholar
  22. 22.
    Thammachart M, Meeyoo V, Risksomboon T, Osuwan S (2001) Catal Today 68:53CrossRefGoogle Scholar
  23. 23.
    Bozo C, Guilhaume N, Garbowski E, Primet M (2000) Catal Today 59:33CrossRefGoogle Scholar
  24. 24.
    Trovarelli A, De Leitenburg C, Dolcetti G (1997) ChemTech 27:32Google Scholar
  25. 25.
    Chen HL, Zhu HY, Wu Y, Gao F, Dong L, Zhu JJ (2006) J Mol Catal A 255:254CrossRefGoogle Scholar
  26. 26.
    Chen Y-Z, Liaw B-J, Chen H-C (2006) Int J Hydrogen Energy 31:427CrossRefGoogle Scholar
  27. 27.
    Ratnasamy P, Srinivas D, Satyanarayana CVV, Manikandan P, Senthil Kumaran RS, Sachin M, Shetti VN (2004) J Catal 221:455CrossRefGoogle Scholar
  28. 28.
    Huber F, Yu ZX, Walmsley JC, Chen D, Venvik HJ, Holmen A (2007) Appl Catal B 71:7CrossRefGoogle Scholar
  29. 29.
    Wang S-P, Wang X-Y, Huang J, Zhang S-M, Wang S-R, Wu S-H (2007) Catal Comm 8:231CrossRefGoogle Scholar
  30. 30.
    Dong X-F, Zou H-B, Lin W-M (2006) Int J Hydrogen Energy 31:2337CrossRefGoogle Scholar
  31. 31.
    Ren T-Z, Yuan Z-Y, Su B-L (2003) Chem Phys Lett 374:170CrossRefGoogle Scholar
  32. 32.
    Yuan Z-Y, Su B-L (2003) Chem Phys Lett 381:710CrossRefGoogle Scholar
  33. 33.
    Lin R, Luo M-F, Zhong Y-J, Yuan Z-L, Liu G-Y, Liu W-P (2003) Appl Catal A 255:331CrossRefGoogle Scholar
  34. 34.
    Zhou R-X, Yu T-M, Jiang X-Y, Chen F, Zheng X-M (1999) Appl Surf Sci 148:263CrossRefGoogle Scholar
  35. 35.
    Avgouropoulos G, Ioannides T (2003) Appl Catal A 244:155CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jian-Liang Cao
    • 1
  • Qing-Fang Deng
    • 1
  • Zhong-Yong Yuan
    • 1
    Email author
  1. 1.Institute of New Catalytic Materials Science, Key Laboratory of Energy-Material Chemistry (Tianjin) & Engineering Research Center of Energy Storage and Conversion (Ministry of Education), College of ChemistryNankai UnviersityTianjinPeople’s Republic of China

Personalised recommendations