Journal of Materials Science

, Volume 44, Issue 24, pp 6591–6600 | Cite as

Electrochemical characterization of Pt/carbon xerogel and Pt/carbon aerogel catalysts: first insights into the influence of the carbon texture on the Pt nanoparticle morphology and catalytic activity

  • Nathalie JobEmail author
  • Frédéric Maillard
  • Julien Marie
  • Sandrine Berthon-Fabry
  • Jean-Paul Pirard
  • Marian Chatenet
Mesostructured Materials


Platinum catalysts were prepared by impregnation/reduction of two carbon supports with different pore textures: one carbon aerogel and one carbon xerogel. Impregnation with H2PtCl6 was followed by reduction in aqueous phase with NaBH4, filtration, drying and subsequent reduction by H2. The catalysts were characterized by widely used physico-chemical methods (N2 adsorption, transmission electron microscopy, X-ray diffraction and CO chemisorption); from these techniques, no significant difference could be detected between the two samples. Actual Pt surface areas measured by coulometry of the electrochemical COads stripping are comparable for both samples. However, the peak position and charge below each electrooxidation peak points towards different fraction of small/large particles within these two samples. In addition, COads stripping shows that a fraction of the Pt particle surface is not electrochemically active. Pronounced differences observed in the specific activity towards O2 reduction reaction were then explained by structural differences in Pt particles, undetectable by physico-chemical characterization techniques.


Oxygen Reduction Reaction Carbon Support Electrochemical Characterization Carbon Aerogel Metal Particle Size 



N.J. is a postdoctoral researcher of the F.R.S.-FNRS (Belgium). The Belgian authors thank the Fonds de Bay, the Fonds de Recherche Fondamentale Collective, the Ministère de la Région Wallonne and the Interuniversity Attraction Pole (IAP-P6/17) for their financial support, and acknowledge the involvement of their laboratory in the Network of Excellence FAME of the European Union Sixth Framework Program. The French authors thank the Groupement des Écoles des Mines (GEM).


  1. 1.
    Pekala RW (1989) J Mater Sci 24:3221. doi: CrossRefGoogle Scholar
  2. 2.
    Al-Muhtaseb SA, Ritter JA (2003) Adv Mater 15:101CrossRefGoogle Scholar
  3. 3.
    Job N, Théry A, Pirard R et al (2005) Carbon 43:2481CrossRefGoogle Scholar
  4. 4.
    Moreno-Castilla C, Maldonado-Hódar FJ (2005) Carbon 43:455CrossRefGoogle Scholar
  5. 5.
    Job N, Heinrichs B, Lambert S et al (2006) AIChE J 52:2663CrossRefGoogle Scholar
  6. 6.
    Samant PV, Pereira MFR, Figueiredo JL (2005) Catal Today 102–103:183CrossRefGoogle Scholar
  7. 7.
    Marie J, Berthon S, Achard P et al (2004) J Non-Cryst Solids 350:88CrossRefGoogle Scholar
  8. 8.
    Marie J, Berthon-Fabry S, Chatenet M et al (2007) J Appl Electrochem 37:147CrossRefGoogle Scholar
  9. 9.
    Job N, Marie J, Lambert S et al (2008) Energ Convers Manage 49:2461CrossRefGoogle Scholar
  10. 10.
    Marie J, Chenitz R, Chatenet M et al (2009) J Power Sources 190:423CrossRefGoogle Scholar
  11. 11.
    Maillard F, Eikerling M, Cherstiouk OV et al (2004) Faraday Discuss 125:357CrossRefGoogle Scholar
  12. 12.
    Maillard F, Schreier S, Hanzlik M et al (2005) Phys Chem Chem Phys 7:385CrossRefGoogle Scholar
  13. 13.
    Maillard F, Savinova E, Stimming U (2007) J Electroanal Chem 599:221CrossRefGoogle Scholar
  14. 14.
    Alié C, Pirard R, Lecloux AJ et al (1999) J Non-Cryst Solids 246:216CrossRefGoogle Scholar
  15. 15.
    Lecloux AJ (1981) In: Anderson JR, Boudart M (eds) Catalysis, science and technology, vol 2. Springer, Berlin, pp 171–230CrossRefGoogle Scholar
  16. 16.
    Job N, Pereira MFR, Lambert S et al (2006) J Catal 240:160CrossRefGoogle Scholar
  17. 17.
    Bergeret G, Gallezot P (1997) In: Ertl G, Knözinger H, Weitkamp J (eds) Handbook of heterogeneous catalysis. Wiley, Weinheim, pp 439–464Google Scholar
  18. 18.
    Trasatti S (1992) J Electroanal Chem 327:353CrossRefGoogle Scholar
  19. 19.
    Bard AJ, Faulkner LR (1992) Electrochemical methods: fundamentals and applications. Wiley, New York, p 283Google Scholar
  20. 20.
    Rodríguez-Reinoso F, Rodríguez-Ramos I, Moreno-Castilla C et al (1986) J Catal 99:171CrossRefGoogle Scholar
  21. 21.
    Gomez R, Feliu JM, Aldaz A et al (1998) Surf Sci 410:48CrossRefGoogle Scholar
  22. 22.
    Guilminot E, Corcella A, Chatenet M et al (2007) J Electroanal Chem 599:111CrossRefGoogle Scholar
  23. 23.
    Gasteiger HA, Kocha SS, Sompalli B et al (2005) Appl Catal B 56:9CrossRefGoogle Scholar
  24. 24.
    Lambert S, Job N, D’Souza L et al (2009) J Catal 261:23CrossRefGoogle Scholar
  25. 25.
    Mahata N, Pereira MFR, Suárez-García F et al (2008) J Colloid Interface Sci 324:150CrossRefGoogle Scholar
  26. 26.
    Kinoshita K (1988) Carbon—electrochemical and physicochemical properties. Wiley, New York, p 48Google Scholar
  27. 27.
    Kinoshita K (1990) J Electrochem Soc 137:845CrossRefGoogle Scholar
  28. 28.
    Henry CR (1998) Surf Sci 31:235Google Scholar
  29. 29.
    Maillard F, Pronkin S, Savinova ER (2009) In: Vielstich W, Gasteiger HA, Yokokawa H (eds) Handbook of fuel cells, Advances in electocatalysis, materials, diagnostics and durability, vol 5. John Wiley & Sons, Inc., New York, pp 91–111Google Scholar
  30. 30.
    Holscher HH, Sachtler WMH (1966) Discuss Faraday Soc 41:29CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Nathalie Job
    • 1
    Email author
  • Frédéric Maillard
    • 2
  • Julien Marie
    • 3
  • Sandrine Berthon-Fabry
    • 3
  • Jean-Paul Pirard
    • 1
  • Marian Chatenet
    • 2
  1. 1.Laboratoire de Génie Chimique (B6a)Université de LiègeLiègeBelgium
  2. 2.Laboratoire d’Électrochimie et de Physico-chimie des Matériaux et des Interfaces (LEPMI), UMR 5631 CNRS/Grenoble-INP/UJF, BP75St Martin d’Hères CedexFrance
  3. 3.Mines ParisTech, Centre Énergétique et ProcédésSophia-Antipolis CedexFrance

Personalised recommendations