Journal of Materials Science

, Volume 44, Issue 24, pp 6764–6774 | Cite as

Organic–inorganic hybrid mesoporous monoliths for selective discrimination and sensitive removal of toxic mercury ions

  • Sherif A. El-SaftyEmail author
Mesostructured Materials


The selective optical sensing is attracting strong interest due to the use of “low-tech” spectroscopic instrumentation to detect relevant chemical species in biological and environmental processes. Our development has focused on tailoring specific solid mesoporous monoliths to be used as highly sensitive solid sensors for simple and simultaneous naked-eye detection and removal processes of extremely toxic heavy metal ions such as mercury ions in aquatic samples. The methods are emerging to design optical disc-like sensors by the immobilisation two different organic groups; however, the first organic moiety can enhance the polarity of the inorganic mesoporous disc-like monoliths “additional agents” and the second one can act as a recognition center “probe”. The latter one such as tetraphenylporphine tetrasulfonic acid (TPPS) probe led to facile handling of signal read-out with visual detection of ultra-trace concentrations of mercury ions at the same frequency as the human eye. The facile signaling was quantitatively evident using simple spectrophotometric techniques to indicate the TPPS–Hg(II) ion binding events. Control sensing assays of Hg(II) ions such as contact-time “signal response time”, thickness of support-based sensor, reaction temperature, and pH were established for achieving enhanced signal response and color intensities. Based on our results, these new classes of optical cage sensors exhibited long-term stability of recognition and signaling functionalities of Hg(II) ions that in general provided extraordinary sensitivity, selectivity, reusability, and fast kinetic detection and quantification of Hg(II) ions in our environment.

Graphical Abstract

A successful design of organic–inorganic disc-like sensor monoliths show advanced features of a further control of the sensing assay that can be governed by facile handling of signal read-out optical measurements at trace levels (~10−9 mol/dm3) of Hg(II) ions in fast response time (1 min).


Methyl Mercury Molecular Imprint Polymer TMOS Inorganic Mercury Organic Moiety 


  1. 1.
    Miyawaki A, Lopis J, Helm R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Nature 388:882CrossRefGoogle Scholar
  2. 2.
    Oehme I, Wolfbeis OS (1997) Mikrochim Acta 126:177CrossRefGoogle Scholar
  3. 3.
    Buhlmann P, Pretsch E, Bakker E (1998) Chem Rev 98:1593CrossRefGoogle Scholar
  4. 4.
    Keith LH, Gron LU, Young JL (2007) Chem Rev 107:2695CrossRefGoogle Scholar
  5. 5.
    Spichiger-Keller US (1998) Chemical sensors and biosensors for medical and biological applications. Wiley-VCH, Weinheim, GermanyCrossRefGoogle Scholar
  6. 6.
    Wirnsberger G, Scott BJ, Stucky GD, Wirnsberger G (2001) Chem Commun 119Google Scholar
  7. 7.
    Nicole L, Boissiere C, Grosso D, Hesemann P, Moreau J, Sanchez C (2004) Chem Commun 2312Google Scholar
  8. 8.
    Lee SJ, Lee SS, Lee JY, Jung JH (2006) Chem Mater 18:4713CrossRefGoogle Scholar
  9. 9.
    Palomares E, Vilar R, Green A, Durrant JR (2004) Adv Funct Mater 14:111CrossRefGoogle Scholar
  10. 10.
    Liu J, Lu Y (2004) Chem Mater 16:3231CrossRefGoogle Scholar
  11. 11.
    Comes M, Marcos MD, Sancenon F, Soto J, Villaescusa LA, Amoros P, Beltran D (2004) Adv Mater 16:1783CrossRefGoogle Scholar
  12. 12.
    Capitan-Vallvey LF, Raya CC, Lopez EL, Ramos MDF (2004) Anal Chim Acta 524:365CrossRefGoogle Scholar
  13. 13.
    Kalinina MA, Golubev NV, Raitman OA, Selector SL, Arslanov VV (2006) Sens Actuators B 114:19CrossRefGoogle Scholar
  14. 14.
    Rodman DL, Pan H, Clarier CW, Feng W, Xue ZL (2005) Anal Chem 77:3231CrossRefGoogle Scholar
  15. 15.
    Potyrailo AR (2006) Angew Chem Int Ed 45:702CrossRefGoogle Scholar
  16. 16.
    Desacalzo AB, Rurack K, Weisshoff H, Mártinez-Mánez RM, Marcos MD, Amoros P, Hoffmann K, Soto J (2005) J Am Chem Soc 127:184CrossRefGoogle Scholar
  17. 17.
    El-Safty SA, Hanaoka T (2004) Chem Mater 16:384CrossRefGoogle Scholar
  18. 18.
    El-Safty SA, Evans J (2002) J Mater Chem 12:117CrossRefGoogle Scholar
  19. 19.
    El-Safty SA, Hanaoka T (2003) Adv Mater 15:1893CrossRefGoogle Scholar
  20. 20.
    El-Safty SA, Hanaoka T (2003) Chem Mater 15:2892CrossRefGoogle Scholar
  21. 21.
    Melosh NA, Lipic P, Bates FS, Wudl F, Stucky GD, Fredrickson CH, Chmelka BF (1999) Macromolecules 32:4332CrossRefGoogle Scholar
  22. 22.
    Melosh NA, Davidson P, Feng P, Pin DJ, Chmelka BF (2000) J Am Chem Soc 122:823CrossRefGoogle Scholar
  23. 23.
    Lu Y, Yang Y, Sellinger A, Lu M, Huang J, Fan H, Haddad R, Lopez G, Burns AR, Sasaki DY, Shelnutt J, Brinker CJ (2001) Nature 410:913CrossRefGoogle Scholar
  24. 24.
    El-Safty SA (2008) J Colloid Interface Sci 319:477CrossRefGoogle Scholar
  25. 25.
    El-Safty SA, Kiyozumi Y, Hanaoka T, Muzukami F (2008) Appl Catal A 337:121CrossRefGoogle Scholar
  26. 26.
    El-Safty SA, Balaji T, Matsunaga H, Hanaoka T, Muzukami F (2006) Angew Chem Int Ed 45:7202CrossRefGoogle Scholar
  27. 27.
    El-Safty SA, Prabhakaran D, Ismail AA, Matsunaga H, Muzukami F (2007) Adv Funct Mater 17:3731CrossRefGoogle Scholar
  28. 28.
    El-Safty SA, Prabhakaran D, Ismail AA, Matsunaga H, Muzukami F (2008) Chem Mater 20:2644CrossRefGoogle Scholar
  29. 29.
    El-Safty SA, Ismail AA, Matsunaga H, Muzukami F (2008) J Phys Chem C 112:4825CrossRefGoogle Scholar
  30. 30.
    Benounis M, Jaffrezic-Renault N, Halouani H, Lamartine R, Dumazet-Bonnamour I (2006) Mater Sci Eng C 26:364CrossRefGoogle Scholar
  31. 31.
    Harris HH, Pickering I, George GN (2003) Science 301:1203CrossRefGoogle Scholar
  32. 32.
    Tag K, Riedel K, Bauer HJ, Hanke G, Baronian KHR, Kunze G (2007) Sens Actuators B 122:403CrossRefGoogle Scholar
  33. 33.
    Kaiser G, Tolg G (1980) The handbook of environmental chemistry, vol 3, part A. Springer-Verlag, NY, pp 1–58Google Scholar
  34. 34.
    Feng X, Fryxell GE, Wang L-Q, Kim AY, Liu J, Kemner KM (1997) Science 276:92CrossRefGoogle Scholar
  35. 35.
    Metivier R, Leray I, Lebeau BD, Valeur B (2005) J Mater Chem 15:2965CrossRefGoogle Scholar
  36. 36.
    Balaji T, Sasidrharan M, Matsunaga H (2005) Analyst 130:1162CrossRefGoogle Scholar
  37. 37.
    El-Safty SA, Prabhakaran D, Kiyozumi Y, Mizukami F (2008) Adv Funct Mater 18:1739CrossRefGoogle Scholar
  38. 38.
    El-Safty SA, Hanaoka T, Mizukami F (2005) Adv Mater 17:47–53CrossRefGoogle Scholar
  39. 39.
    El-Safty SA, Hanaoka T, Mizukami F (2006) Acta Mater 54:899CrossRefGoogle Scholar
  40. 40.
    El-Safty SA, Kiyozumi Y, Hanaoka T, Mizukami F (2008) J Phys Chem 112:5476Google Scholar
  41. 41.
    Liu AM, Hidajat K, Kawi S, Zhao DY (2000) Chem Commun 1145Google Scholar
  42. 42.
    Engelhardt G, Michel D (1987) High resolution solid-state NMR of silicates and zeolites. John Wiely and Sons, New YorkGoogle Scholar
  43. 43.
    Liu Y-H, Lin H-P, Mou C-H (2004) Langmuir 20:3231CrossRefGoogle Scholar
  44. 44.
    El-Safty SA, Mizukami F, Hanaoka T (2005) J Phys Chem B 109:9255CrossRefGoogle Scholar
  45. 45.
    El-Safty SA, Hanaoka T, Mizukami F (2005) Chem Mater 17:3137CrossRefGoogle Scholar
  46. 46.
    Kruk M, Jaroniec M (2003) Chem Mater 15:2942CrossRefGoogle Scholar
  47. 47.
    Coronado E, Galán-Mascarós JR, Martí-Gastaldo C, Palomares E, Durrant JR, Vilar R, Gratzel M, Nazeeruddin MdK (2005) J Am Chem Soc 127:12351CrossRefGoogle Scholar
  48. 48.
    Han MS, Kim DH (2002) Angew Chem Int Ed 41:3809CrossRefGoogle Scholar
  49. 49.
    Miyaji H, Sato W, Sessler JL (2000) Angew Chem Int Ed 39:1777CrossRefGoogle Scholar
  50. 50.
    Rex M, Hernandez FE, Campiglia AD (2006) Anal Chem 78:445CrossRefGoogle Scholar
  51. 51.
    El-Safty SA, Ismail AA, Matsunaga H, Muzukami F (2007) Chem Eur J 13:9245CrossRefGoogle Scholar
  52. 52.
    Liu J, Lu Y (2004) J Am Chem Soc 126:12298CrossRefGoogle Scholar
  53. 53.
    Sandell EB (1959) Colorimetric determination of traces of metals, 3rd edn. Interscience Publisher INC, NYGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Innovative Materials Engineering LaboratoryNational Institute for Materials Science (NIMS)TsukubaJapan

Personalised recommendations