Journal of Materials Science

, Volume 44, Issue 24, pp 6608–6616 | Cite as

Construction and characterization of tunable meso-/macroporous tungsten oxide-based transmissive electrochromic devices

  • Subramanian Balaji
  • Yahia DjaouedEmail author
  • André-Sébastien Albert
  • Richard Z. Ferguson
  • Ralf Brüning
  • Bao-Lian Su
Mesostructured Materials


Recent developments in the processing of porous transition metal oxide thin films have opened up new opportunities in the construction of electrochromic (EC) devices with enhanced properties. Tungsten oxide (WO3) is one of the most promising materials for EC devices. In this work, we report on the synthesis of meso-/macroporous WO3 thin films using tungstic acid as precursor and organically modified silane (ORMOSIL) as a templating agent. Calcination of the film at 500 °C resulted in nanocrystalline monoclinic tungsten oxide (m-WO3) with crystallite sizes of ~16 nm. The meso-/macroporous structure is retained after calcination. An asymmetric EC device based on the meso-/macroporous m-WO3 thin film was constructed. Thus constructed EC device was characterized by micro-Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction (XRD). Detailed micro-Raman and XRD studies of the intercalation and deintercalation of lithium (Li) in the meso-/macroporous m-WO3 layer of the EC device as a function of the applied voltage were performed. The meso-/macroporous WO3 layer, which was found to be monoclinic before Li intercalation, transforms to its higher symmetric phase of tetragonal and toward cubic phase when Li is intercalated into it. Upon complete deintercalation, these phase transitions were reversed and m-WO3 is recovered. Optical transmission studies were performed in conjunction with Raman and XRD studies. This study shows that meso-/macroporous m-WO3 layer-based EC device exhibit a high color contrast during the coloration and bleaching.


Raman Spectrum Tungsten Oxide Templating Agent Tungstic Acid Coloration Potential 



The financial support of the Research Assistantships Initiative of New Brunswick Innovation Fund (NBIF), the Atlantic Innovation Fund (AIF—Round II), and National Science and Engineering Research Council (NSERC) of Canada is gratefully acknowledged. We thank Dr. Louise Weaver (Microscopy Microanalysis Facility, University of New Brunswick, Fredericton, NB, Canada) for the TEM measurements, and Zoulika Hadj—Sadok (Laboratoire de Chimie des matériaux inorganiques – FUNDP, Namur, Belgique) for BET and thermogravimetric measurements.


  1. 1.
    Granqvist CG (1995) Handbook of inorganic electrochromic materials. Elsevier, New YorkGoogle Scholar
  2. 2.
    Granqvist CG (2000) Sol Energy Mater Sol Cells 60:201CrossRefGoogle Scholar
  3. 3.
    Somani PR, Radhakrishnan S (2003) Mater Chem Phys 77:117CrossRefGoogle Scholar
  4. 4.
    Deb SK (2008) Sol Energy Mater Sol Cells 92:245CrossRefGoogle Scholar
  5. 5.
    Granqvist CG (2006) Nat Mater 5:89CrossRefGoogle Scholar
  6. 6.
    Niklasson GA, Granqvist CG (2007) J Mater Chem 17:127CrossRefGoogle Scholar
  7. 7.
    Balaji S, Albert A-S, Djaoued Y, Brüning R (2009) J Raman Spectrosc 40:92CrossRefGoogle Scholar
  8. 8.
    Gogova D, Gesheva K, Szekeres A, Sendova-Vassileva M (1999) Phys Status Solidi A 176:969CrossRefGoogle Scholar
  9. 9.
    Djaoued Y, Priya S, Balaji S (2008) J Non-Cryst Solids 354:673CrossRefGoogle Scholar
  10. 10.
    Djaoued Y, Ashrit PV, Badilsecu S, Brüning R (2003) J Sol-Gel Sci Technol 28:235CrossRefGoogle Scholar
  11. 11.
    Yang B, Li H, Blackford M, Luca V (2006) Curr Appl Phys 6:436CrossRefGoogle Scholar
  12. 12.
    Opara Krašovec U, Georg A, Georg A, Wittwer V, Joachim L, Topič M (2004) Sol Energy Mater Sol Cells 84:369CrossRefGoogle Scholar
  13. 13.
    Cheng W, Baudrin E, Dunn B, Zink JI (2001) J Mater Chem 11:92CrossRefGoogle Scholar
  14. 14.
    Daniel MF, Desbat B, Lassegues JC (1987) J Solid State Chem 67:235CrossRefGoogle Scholar
  15. 15.
    Boulova M, Rosman M, Bouvier P, Lucazeau G (2002) J Phys Condens Matter 14:5849CrossRefGoogle Scholar
  16. 16.
    Boulova M, Lucazeau G (2002) J Solid State Chem 167:425CrossRefGoogle Scholar
  17. 17.
    Kuzmin A, Purans J, Cazznelli E, Vinegoni C, Mariotti G (1998) J Appl Phys 84:5515CrossRefGoogle Scholar
  18. 18.
    Pyper O, Kaschner A, Thomsen C (2002) Sol Energy Mater Sol Cells 71:511CrossRefGoogle Scholar
  19. 19.
    Cazznelli E, Vinegoni C, Mariotto G, Kuzmin A, Purans J (1999) J Solid State Chem 143:24CrossRefGoogle Scholar
  20. 20.
    Lee S-H, Seong MJ, Cheong HM, Ozkan E, Tracy EC, Deb SK (2003) Solid State Ionics 156:447CrossRefGoogle Scholar
  21. 21.
    Zhong Q, Dahn JR, Colbow K (1992) Phys Rev B 46:2554CrossRefGoogle Scholar
  22. 22.
    Stathatos E, Lianos P, Štangar UL, Orel B (2002) Adv Mater 14:354CrossRefGoogle Scholar
  23. 23.
    Powder Diffraction Files Inorganic and Organic (Cards No: 43–1035 (Monoclinic-WO3), No: 89–1287 (tetragonal-WO3)) (1996) JCPDS-International Centre for Diffraction Data, PDF2 Data Base, SwarthmoreGoogle Scholar
  24. 24.
    Amra C (1992) Appl Opt 32:5481CrossRefGoogle Scholar
  25. 25.
    Von Rottkay K, Rubin M, Wen S-J (1997) Thin Solid Films 306:10CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Subramanian Balaji
    • 1
  • Yahia Djaoued
    • 1
    Email author
  • André-Sébastien Albert
    • 1
  • Richard Z. Ferguson
    • 1
  • Ralf Brüning
    • 2
  • Bao-Lian Su
    • 3
  1. 1.Laboratoire de Micro-Spectroscopies Raman et FTIRUniversité de Moncton – Campus de ShippaganShippaganCanada
  2. 2.Physics DepartmentMount Allison UniversitySackvilleCanada
  3. 3.Laboratoire de Chimie des Matériaux InorganiquesThe University of Namur (FUNDP)NamurBelgium

Personalised recommendations