Advertisement

Journal of Materials Science

, Volume 44, Issue 24, pp 6805–6810 | Cite as

Close-packed array of gold nanoparticles and sum frequency generation spectroscopy in total internal reflection: a platform for studying biomolecules and biosensors

  • Gérard Tourillon
  • Laurent Dreesen
  • Cédric Volcke
  • Yannick Sartenaer
  • Paul A. Thiry
  • André Peremans
Mesostructured Materials

Abstract

An approach is introduced for studying the adsorption and recognition mechanisms of biomolecules, without using any markers. We show for the first time, that the sum frequency generation spectroscopy performed in the total internal reflection (TIR-SFG) geometry, combined with a regular close-packed array of gold nanoparticles allows to probe with a high sensitivity the changes in conformation and orientation induced by the recognition process of avidin by biocytin. This approach represents a new platform with potential use in biosensors, diagnostics and bioactive layers.

Keywords

Gold Nanoparticles Biocytin AuNP Surface Total Internal Reflection Condition Flat Gold Surface 

Notes

Acknowledgements

L.D. and C.V. acknowledge the Walloon Region and the University of Namur—FUNDP for financial supports. C.V. is a postdoctoral researcher of the Belgian Fund for Scientific Research (F.R.S.-F.N.R.S.). This study was supported by the Centre National de la Recherche Scientifique (C.N.R.S.) and by the Belgian Fund for Scientific Research (F.R.F.C.).

References

  1. 1.
    Horbett TA, Brash JL (1995) Proteins at interfaces II, fundamentals and applications. ACS Symp. Ser.602. American Chemical Society, Washington, DCCrossRefGoogle Scholar
  2. 2.
    Brash JL, Horbett TA (1975) Proteins at interfaces, physicochemical and biochemical studies. American Chemical Society, Washingthon, DCGoogle Scholar
  3. 3.
    Norde W, Lyklema J (1991) J Biomater Sci Polym Ed 2:183CrossRefGoogle Scholar
  4. 4.
    Ramsden JJ (1994) Q Rev Biophys 27:41CrossRefGoogle Scholar
  5. 5.
    Dickinson E (1989) Colloids Surf 42:191CrossRefGoogle Scholar
  6. 6.
    Barone PW, Baik S, Heller DA, Strano MS (2005) Nat Mater 4:86CrossRefGoogle Scholar
  7. 7.
    Chen RJ, Bangsaruntip S, Drouvalakis KA, Kam NWS, Shim M, Li Y, Kim W, Utz PJ, Dai H (2003) Proc Natl Acad Sci USA 100:4984CrossRefGoogle Scholar
  8. 8.
    Kam NWS, Jessop TS, Wender PA, Dai HJ (2004) J Am Chem Soc 126:6850CrossRefGoogle Scholar
  9. 9.
    Graff RA, Swanson JP, Barone PW, Baik S, Heller DA, Strano MS (2005) Adv Mater 17:980CrossRefGoogle Scholar
  10. 10.
    Norde W, Giacomelli CE (1999) Macromol Symp 145:125CrossRefGoogle Scholar
  11. 11.
    Norde W (1995) Cell Mater 5:97Google Scholar
  12. 12.
    Sethuraman A, Han M, Kane RS, Belfort G (2004) Langmuir 20:7779CrossRefGoogle Scholar
  13. 13.
    Xu L-C, Siedlecki CA (2007) Biomaterials 28:3273CrossRefGoogle Scholar
  14. 14.
    Lu JR, Zhao XB, Yaseen M (2007) Curr Opin Colloid Interface Sci 12:9CrossRefGoogle Scholar
  15. 15.
    Xu H, Lu JR, Williams DE (2006) J Phys Chem B 110:1907CrossRefGoogle Scholar
  16. 16.
    Asuri P, Karajanagi SS, Yang H, Yim TJ, Kane RS, Dordick JS (2006) Langmuir 22:5833CrossRefGoogle Scholar
  17. 17.
    Leung C, Xirouchaki C, Berovic N, Palmer RE (2004) Adv Mater 16:223CrossRefGoogle Scholar
  18. 18.
    Lahav M, Vaskevich A, Rubinstein I (2004) Langmuir 20:7365CrossRefGoogle Scholar
  19. 19.
    Häusling L, Ringsdorf H, Schmitt FJ, Knoll W (1991) Langmuir 7:1837CrossRefGoogle Scholar
  20. 20.
    Ramdas L, Zhang W (2002) Biophotonics 9:342Google Scholar
  21. 21.
    De Paris R, Strunz T, Oroszlan K, Güntherodt HJ, Hegner M (2000) Single Mol 1:285CrossRefGoogle Scholar
  22. 22.
    Lo YS, Huefner ND, Chan WS, Steven F, Harris JM, Beebe TP Jr (1999) Langmuir 15:1373CrossRefGoogle Scholar
  23. 23.
    Sastry M, Lala N, Patil V, Chavan SP, Chittiboyina AG (1998) Langmuir 14:4138CrossRefGoogle Scholar
  24. 24.
    Lala N, Chittiboyina AG, Chavan SP, Sastry M (2002) Coll Surf A 205:15CrossRefGoogle Scholar
  25. 25.
    Clarkson J, Sudworth C, Masca SI, Batchelder DN, Smith DA (2000) J Raman Spectrosc 31:373CrossRefGoogle Scholar
  26. 26.
    Torreggiani A, Fini G (1999) J Mol Struct 480–481:459CrossRefGoogle Scholar
  27. 27.
    Pradier CM, Salmain M, Zheng L, Jaouen G (2002) Surf Sci 502–503:193CrossRefGoogle Scholar
  28. 28.
    Shen YR (1989) Annu Rev Phys Chem 40:327CrossRefGoogle Scholar
  29. 29.
    Gracias DH, Chen Z, Shen YR, Somorjai GA (1999) Acc Chem Res 32:930CrossRefGoogle Scholar
  30. 30.
    Tadjeddine A, Peremans A (1998) Spectroscopy for surface science, chap 4. Wiley, New YorkGoogle Scholar
  31. 31.
    Williams CT, Yang Y, Bain CD (2000) Langmuir 16:2343CrossRefGoogle Scholar
  32. 32.
    Dreesen L, Humbert C, Hollander P, Mani AA, Ataka K, Thiry PA, Peremans A (2001) Chem Phys Lett 333:327CrossRefGoogle Scholar
  33. 33.
    Wang J, Even MA, Chen X, Schmaier AH, Waite JH, Chen Z (2003) J Am Chem Soc 125:9914CrossRefGoogle Scholar
  34. 34.
    Wang J, Clarke ML, Zhang Y, Chen Z (2003) Langmuir 19:7862CrossRefGoogle Scholar
  35. 35.
    Kim J, Somorjai GA (2003) J Am Chem Soc 125:3150CrossRefGoogle Scholar
  36. 36.
    Mermut O, Phillips DC, York RL, McCrea KR, Ward RS, Somorjai GA (2006) J Am Chem Soc 128:3598CrossRefGoogle Scholar
  37. 37.
    Wang J, Clarke ML, Chen X, Even MA, Johnson WC, Chen Z (2005) Surf Sci 587:1CrossRefGoogle Scholar
  38. 38.
    Humbert C, Busson B, Abid JP, Six C, Girault HH, Tadjeddine A (2005) Electrochim Acta 50:3101CrossRefGoogle Scholar
  39. 39.
    Weeraman C, Yatawara AK, Bordenyuk AN, Benderskii AV (2006) J Am Chem Soc 128:14244CrossRefGoogle Scholar
  40. 40.
    Yeganeh MS, Dougal SM, Silbernagel BG (2006) Langmuir 22:637CrossRefGoogle Scholar
  41. 41.
    Kweskin SJ, Rioux RM, Habas SE, Komvopoulos K, Yang P, Somorjai GA (2006) J Phys Chem B 110:15920CrossRefGoogle Scholar
  42. 42.
    Tourillon G, Dreesen L, Volcke C, Sartenaer Y, Thiry PA, Peremans A (2007) Nanotechnology 18:415301CrossRefGoogle Scholar
  43. 43.
    Pugliese L, Coda A, Malcovati M, Bolognesi M (1993) J Mol Biol 231:698CrossRefGoogle Scholar
  44. 44.
    Carter DC, Ho JX (1994) Adv Protein Chem 45:153CrossRefGoogle Scholar
  45. 45.
    Frens G (1973) Nature 241:20Google Scholar
  46. 46.
    Rosei R, Lynch DW (1972) Phys Rev B 5:3883CrossRefGoogle Scholar
  47. 47.
    Rasa M, Kuipers BWM, Philipse AP (2002) J Colloid Interf Sci 250:303CrossRefGoogle Scholar
  48. 48.
    Mani AA, Dreesen L, Humbert C, Hollander P, Caudano Y, Thiry PA, Peremans A (2002) Surf Sci 502–503:261CrossRefGoogle Scholar
  49. 49.
    Bain CD (1995) J Chem Soc Faraday Trans 91:1281CrossRefGoogle Scholar
  50. 50.
    Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG (1991) The handbook of infrared and raman characteristic frequencies of organic molecules. Academic Press, San Diego, CAGoogle Scholar
  51. 51.
    Dreesen L, Sartenaer Y, Humbert C, Mani AA, Methivier C, Pradier CM, Thiry PA, Peremans A (2004) Chem Phys Chem 5:1719CrossRefGoogle Scholar
  52. 52.
    Ji N, Shen YR (2004) J Chem Phys 120:7107CrossRefGoogle Scholar
  53. 53.
    Lu RL, Gan W, Wu B-H, Zhang Z, Guo Y, Wang H-F (2005) J Phys Chem B 109:14118CrossRefGoogle Scholar
  54. 54.
    Polavarapu PL, Smith HE (1988) J Phys Chem 92:1774CrossRefGoogle Scholar
  55. 55.
    Dreesen L, Sartenaer Y, Humbert C, Mani AA, Lemaire LL, Methivier C, Pradier CM, Thiry PA, Peremans A (2004) Thin Solid Films 464–465:373CrossRefGoogle Scholar
  56. 56.
    Dreesen L, Humbert C, Celebi M, Lemaire JJ, Mani AA, Thiry PA, Peremans A (2002) Appl Phys B 74:621CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Gérard Tourillon
    • 1
  • Laurent Dreesen
    • 2
  • Cédric Volcke
    • 2
  • Yannick Sartenaer
    • 2
  • Paul A. Thiry
    • 2
  • André Peremans
    • 2
  1. 1.Institut de Recherches sur la Catalyse et l’Environnement – IRCELYONUniversité Lyon1Villeurbanne CedexFrance
  2. 2.Research Centre in Physics of Matter and Radiation (PMR)FUNDP - University of NamurNamurBelgium

Personalised recommendations