Journal of Materials Science

, Volume 44, Issue 19, pp 5375–5382 | Cite as

Heterolayered PZT thin films of different thicknesses and stacking sequence

  • F. C. Kartawidjaja
  • C. H. Sim
  • J. WangEmail author


The effects of stacking sequence and thickness toward the texture and electrical properties of heterolayered PbZrxTi1−xO3 (PZT) films, consisting of alternating PbZr0.7Ti0.3O3 and PbZr0.3Ti0.7O3 layers, have been studied. Thickness dependence is observed in the ferroelectric and dielectric behavior of the heterolayered PZT films whereby the remanent polarization (Pr) and relative permittivity (ε) increase with thickness, while coercive field (Ec) decreases. When baked at 500 °C and thermally annealed at 650 °C, the heterolayered PZT films regardless of their stacking sequence exhibit perovskite phase with (001)/(100) preferred orientation. Interestingly, the stacking sequence of the heterolayered PZT films dictates the morphology of the films which eventually affects the ferroelectric and dielectric performance. The heterolayered PZT film with PbZr0.7Ti0.3O3 as the first layer (heterolayered PZ70T30 film) exhibits a large grain size in the range of 1–3 μm and shows superior properties as compared to the heterolayered PZT films with PbZr0.3Ti0.7O3 as the first layer (heterolayered PZ30T70 film), which exhibits a much smaller grain size. From the sub-switching field measurement according to the Rayleigh law, there appears a lower concentration or mobility of domain walls in the small-grained heterolayered PZ30T70 films.


Domain Wall Interfacial Layer Relative Permittivity Thickness Dependence Ferroelectric Film 



This paper is based on work supported by the Science and Engineering Research Council—A*Star, Singapore under Grant No. 012 101 0130. The authors would like to thank Dr. Debbie Seng Hwee Leng for her time and efforts on SIMS measurements and Dr. X.J. Lou for his time in discussion. The authors would like to acknowledge the support of National University of Singapore in this project.


  1. 1.
    Scott JF (2000) Ferroelectric memories. Springer, New YorkCrossRefGoogle Scholar
  2. 2.
    Scott JF, Araujo A (1989) Science 246:1400CrossRefGoogle Scholar
  3. 3.
    Lee HN, Christen HM, Chisholm MF, Rouleau CM, Lowndes DH (2005) Nature 433:395CrossRefGoogle Scholar
  4. 4.
    Cole MW, Ngo E, Hirsch S, Okatan MB, Alpay SP (2008) Appl Phys Lett 92:072906CrossRefGoogle Scholar
  5. 5.
    Qin WF, Xiong J, Zhu J, Tang JL, Jie WJ, Zhang Y, Li YR (2008) J Mater Sci 43:409. doi: CrossRefGoogle Scholar
  6. 6.
    Kanno I, Hayashi S, Takayama R, Hirao T (1996) Appl Phys Lett 68:328CrossRefGoogle Scholar
  7. 7.
    Kim L, Jung D, Kim J, Kim YS, Lee J (2003) Appl Phys Lett 82:2118CrossRefGoogle Scholar
  8. 8.
    Shimuta T, Nakagawara O, Makino T, Arai S, Tabata H, Kawai T (2002) J Appl Phys 91:2290CrossRefGoogle Scholar
  9. 9.
    Bao D, Zhang L, Yao X (2000) Appl Phys Lett 76:1063CrossRefGoogle Scholar
  10. 10.
    Boerasu I, Pintilie L, Kosec M (2000) Appl Phys Lett 77:2231CrossRefGoogle Scholar
  11. 11.
    Bao D, Lee SK, Zhu X, Alexe M, Hesse D (2005) Appl Phys Lett 86:082906CrossRefGoogle Scholar
  12. 12.
    Zhong S, Alpay SP, Cole MW, Ngo E, Hirsch S, Demaree JD (2007) Appl Phys Lett 90:092901CrossRefGoogle Scholar
  13. 13.
    Lee SJ, Moon SE, Ryu HC, Kwak MH, Kim YT, Han SK (2003) Appl Phys Lett 82:2133CrossRefGoogle Scholar
  14. 14.
    Sigman J, Clem PG, Nordquist CD (2006) Appl Phys Lett 89:132909CrossRefGoogle Scholar
  15. 15.
    Kartawidjaja FC, Zhou ZH, Wang J (2006) J Electroceram 16:425CrossRefGoogle Scholar
  16. 16.
    Lee SG, Park IG, Bae SG, Lee YH (1997) Jpn J Appl Phys 36:6880CrossRefGoogle Scholar
  17. 17.
    Wu JG, Xiao DQ, Zhu JG, Zhu JL, Tan JZ, Zhang QL (2007) Appl Phys Lett 90:082902CrossRefGoogle Scholar
  18. 18.
    Zhou ZH, Xue JM, Li WZ, Wang J, Zhu H, Miao JM (2004) J Appl Phys 96:5706CrossRefGoogle Scholar
  19. 19.
    Shi D (2003) Functional thin films and functional materials: new concept and technologies. Springer, New YorkGoogle Scholar
  20. 20.
  21. 21.
    Bouregba R, Poullain GLRG, Leclerc G (2006) J Appl Phys 99:034102CrossRefGoogle Scholar
  22. 22.
    Cillessen JFM, Prins MWJ, Wolf RM (1997) J Appl Phys 81:2777CrossRefGoogle Scholar
  23. 23.
    Mihara T, Yoshimuri H, Watanabe H, Araujo CA (1995) Jpn J Appl Phys 34:5233CrossRefGoogle Scholar
  24. 24.
    Chen SY, Chen IW (1998) J Am Ceram Soc 81:97CrossRefGoogle Scholar
  25. 25.
    Reaney IM, Brooks KG, Klissurska R, Pawlaczyk C, Setter N (1994) J Am Ceram Soc 77:1209CrossRefGoogle Scholar
  26. 26.
    Kanzig W (1955) Phys Rev 98:549CrossRefGoogle Scholar
  27. 27.
    Sidorkin AS, Nesterenko LP, Bocharova IA, Sidorkin VA, Smirnov GL (2003) Ferroelectrics 286:335CrossRefGoogle Scholar
  28. 28.
    Zubko P, Jung DJ, Scott JF (2006) J Appl Phys 100:114112CrossRefGoogle Scholar
  29. 29.
    Zhou ZH, Xue JM, Li WZ, Wang J, Zhu H, Miao JM (2004) Appl Phys Lett 85:804CrossRefGoogle Scholar
  30. 30.
    Kartawidjaja FC, Sim CH, Wang J (2007) J Appl Phys 102:124102CrossRefGoogle Scholar
  31. 31.
    Ellerkmann U, Liedtke R, Waser R (2002) Ferroelectrics 271:315CrossRefGoogle Scholar
  32. 32.
    Lee JJ, Thio CL, Desu SB (1995) J Appl Phys 78:5073CrossRefGoogle Scholar
  33. 33.
    Pintilie L, Vrejoiu I, Hesse D, LeRhun G, Alexe M (2007) Phys Rev B 75:224113CrossRefGoogle Scholar
  34. 34.
    Damjanovic D (1998) Rep Prog Phys 61:1267CrossRefGoogle Scholar
  35. 35.
    Taylor DV, Damjanovic D (1998) Appl Phys Lett 73:2045CrossRefGoogle Scholar
  36. 36.
    Gharb NB, Mckinstry ST (2005) J Appl Phys 97:064106CrossRefGoogle Scholar
  37. 37.
    Hu SH, Hu GJ, Meng XJ, Wang GS, Sun JL, Guo SL, Chu JH, Dai N (2004) J Cryst Growth 260:109CrossRefGoogle Scholar
  38. 38.
    Suzuki K, Kijima K (2005) Jpn J Appl Phys 44:8528CrossRefGoogle Scholar
  39. 39.
    Wang Y, Ren X, Liu J, Zhang Z, Van F, Lu C, Zhu J, Shen H (1999) Ferroelectrics 231:1CrossRefGoogle Scholar
  40. 40.
    Yan F, Bao P, Chan LW, Choy CL, Wang Y (2002) Thin Solid Films 406:282CrossRefGoogle Scholar
  41. 41.
    Arlt G, Hennings D, With GD (1985) J Appl Phys 58:1619CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Materials Science & Engineering, Faculty of EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations