Advertisement

Journal of Materials Science

, Volume 44, Issue 22, pp 5949–5959 | Cite as

Phase transitions in wetting films at the surface of Ga–Pb alloys

  • Cyril Calmes
  • Donatella Giuranno
  • Dominique ChatainEmail author
Interface Science

Abstract

Surface phase transitions at Ga-rich liquid surfaces have been investigated in Ga–Pb alloys with low lead content. In the region of the liquid–liquid miscibility gap, the Pb-rich liquid phase completely wets the surface of the Ga-rich phase at coexistence. Observations have been made of demixing and solidification of the Pb-rich liquid film. Ga-rich alloys, which are single-phase below the monotectic temperature, can be undercooled below the liquidus, as far as the metastable binodal line where the Pb-rich wetting liquid film forms and solidifies into thin {111} Pb crystals. These films completely redissolve upon reheating to the liquidus temperature. Freezing occurs at surfaces because of complete wetting of the liquid rich in the high melting point component and the hysteretic character of the solidification transformation. Such “surface” experiments allow assessment of the stable and metastable liquidus lines of the Ga–Pb phase diagram in the vicinity of the monotectic temperature.

Keywords

Liquidus Line Complete Wetting Monotectic Temperature Surface Freezing Surface Phase Transition 

Notes

Acknowledgements

The authors acknowledge support by the COOLCOP project of the European Space Agency. They also thank Prof. Paul Wynblatt for helpful discussions.

References

  1. 1.
    Cahn JW (1977) J Chem Phys 66:3667CrossRefGoogle Scholar
  2. 2.
    Chatain D, Wynblatt P (1996) Surf Sci 345:85CrossRefGoogle Scholar
  3. 3.
    Chatain D, Wynblatt P, De Ruijter M, De Coninck J, Carter WC (1999) Acta Mater 47:3049CrossRefGoogle Scholar
  4. 4.
    Shim H, Chatain D, Wynblatt P (1998) Surf Sci 415:346CrossRefGoogle Scholar
  5. 5.
    Kwon O, Beaglehole D, Webb WW, Widom B, Schmidt JW, Cahn JW, Moldover MR, Stephenson B (1982) Phys Rev Lett 48:185CrossRefGoogle Scholar
  6. 6.
    Ansara I, Ajersch F (1991) J Phase Equilib 12:73CrossRefGoogle Scholar
  7. 7.
    Serre C, Wynblatt P, Chatain D (1998) Surf Sci 415:336CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Curiotto S, Greco R, Pryds NH, Johnson E, Battezatti L (2007) Fluid Phase Equilib 256:132CrossRefGoogle Scholar
  10. 10.
    Wynblatt P, Saúl A, Chatain D (1998) Acta Mater 46:2337CrossRefGoogle Scholar
  11. 11.
    Halka V, Freyland W (2007) J Chem Phys 127:034702CrossRefGoogle Scholar
  12. 12.
    Cheng WC, Chatain D, Wynblatt P (1995) Surf Sci 327:L501CrossRefGoogle Scholar
  13. 13.
    Kumikov VK, Khokonov KB (1983) J Appl Phys 54:1346CrossRefGoogle Scholar
  14. 14.
    Chatain D (2008) Ann Rev Mater Res 38:45CrossRefGoogle Scholar
  15. 15.
    Chatain D, Métois JJ (1993) Surf Sci 291:1CrossRefGoogle Scholar
  16. 16.
    Chatain D, Martin-Garin L, Eustathopoulos N (1982) J Chim Phys Fr 79:569CrossRefGoogle Scholar
  17. 17.
    Merkwitz M, Weise J, Thriemer K, Hoyer W (1998) Z Metallkd 89(4):247Google Scholar
  18. 18.
    Yang B, Gidalevitz D, Li D, Huang Z, Rice SA (1999) Proc Natl Acad Sci USA 96:13009CrossRefGoogle Scholar
  19. 19.
    Issanin A, Turchanin A, Freyland W (2004) J Chem Phys 121:12005CrossRefGoogle Scholar
  20. 20.
    Turchanin A, Freyland W (2003) Phys Chem Chem Phys 5:5285CrossRefGoogle Scholar
  21. 21.
    Bartel K, Nattland D, Kumar A, Dogel S, Freyland W (2006) J Phys Condens Matter 18:3535CrossRefGoogle Scholar
  22. 22.
    Shpyrko OG, Streitel R, Balagurusamy VSK, Grigoriev AY, Deutsch M, Ocko BM, Meron M, Lin B, Pershan PS (2006) Science 313:77CrossRefGoogle Scholar
  23. 23.
    Massalski TB (1990) Binary alloy phase diagrams, 2nd edn. American Society for Metals International, OH, p 428Google Scholar
  24. 24.
    Predel B (1959) Z Metallkd 50:663Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Cyril Calmes
    • 1
    • 2
  • Donatella Giuranno
    • 1
    • 3
  • Dominique Chatain
    • 1
    Email author
  1. 1.CNRS, Aix-Marseille UniversityMarseilleFrance
  2. 2.Centre Microélectronique de Provence Georges CharpakEcole Nationale Supérieure des Mines de Saint EtienneGardanneFrance
  3. 3.Istituto per l’Energetica e le Interfasi - CNRGenoaItaly

Personalised recommendations