Advertisement

Journal of Materials Science

, Volume 44, Issue 19, pp 5332–5338 | Cite as

A post-growth processing methodology to achieve barium strontium titanate thin films with low dielectric loss and high tunability for reconfigurable tunable devices

  • Melanie W. ColeEmail author
  • Adrian Podpirka
  • Shriram Ramanathan
Ferroelectrics

Abstract

Ba0.60Sr0.40TiO3 (BST) thin films, grown via RF-sputtering and the metalorganic solution deposition (MOSD) techniques, were post-growth annealed via conventional thermal annealing (CTA) and UV-photon irradiation annealing. With respect to the conventional thermal annealed films the UV-photon irradiation annealed films possessed improved structural properties and dielectric response. The optimization of the UV-photon irradiation annealing process parameters (using RF-sputtered BST films) was achieved via a detailed set of iso-thermal/chronal annealing experiments. The optimized UV-process parameters, applied to MOSD synthesized BST films revealed further enhanced dielectric response, i.e., 23% reduction in tan δ with sustained tunability of 42%. The improvements in the material properties of the UV-photon irradiation annealed BST thin films are attributed to stoichiometry and structural changes enabled through the UV-photon irradiation annealing process.

Keywords

Barium Strontium Titanate Tunable Filter High Tunability Varactor Diode Barium Strontium Titanate Thin Film 

References

  1. 1.
    Uher J, Hoefer WJR (1991) IEEE Trans Microwave Theory Tech 39(4):643CrossRefGoogle Scholar
  2. 2.
    Helszajn J (1985) YIG resonators and filters. New York, WileyGoogle Scholar
  3. 3.
    Kuanr B, Harward IR, Marvin DL, Fal T, Camley RE, Mills DL, Celinski Z (2005) IEEE Trans Magn 41(10):3538CrossRefGoogle Scholar
  4. 4.
    Vorobiev A, Rundqvist P, Khamchane K, Gevorgian S (2003) Appl Phys Lett 83(15):3144CrossRefGoogle Scholar
  5. 5.
    Cole MW, Geyer RG (2004) Revista Mexicana De Fisica 50(3):232Google Scholar
  6. 6.
    Cole MW, Geyer RG (2004) Mech Mater 36(10):1017CrossRefGoogle Scholar
  7. 7.
    Cole MW, Hubbard C, Ngo E, Ervin M, Wood M, Geyer RG (2002) J Appl Phys 92:475CrossRefGoogle Scholar
  8. 8.
    Cole MW, Joshi PC, Ervin MH, Wood MC, Pfeffer RL (2000) Thin Solid Films 374(1):34CrossRefGoogle Scholar
  9. 9.
    Ban Z-G, Alpay SP (2003) J Appl Phys 93:504CrossRefGoogle Scholar
  10. 10.
    Hyun S, Lee JH, Kim SS, Char K, Park SJ, Sok S, Lee EH (2000) Appl Phys Lett 77:3084CrossRefGoogle Scholar
  11. 11.
    Kim HS, Hyun TS, Kim HG, Kim ID, Yun TS, Lee JC (2006) Appl Phys Lett 89:052902CrossRefGoogle Scholar
  12. 12.
    Sahoo SK, Agrawal DC, Mohapatra YN, Majumder SB, Katiyar RS (2004) Appl Phys Lett 85:5001CrossRefGoogle Scholar
  13. 13.
    Choi W, Kang BS, Jia QX, Matias V, Findikoglu AT (2006) Appl Phys Lett 88:062907CrossRefGoogle Scholar
  14. 14.
    Ramanathan S, Chi D, McIntyre PC, Wetteland CJ, Tesmer JR (2003) J Electrochem Soc 150:F110CrossRefGoogle Scholar
  15. 15.
    JCPDS Report No. 00-034-0411Google Scholar
  16. 16.
    Kim WJ, Chang W, Qadri SB, Pond JM, Kirchoefer SW, Chrisey DB, Horwitz JS (2000) Appl Phys Lett 76:1185CrossRefGoogle Scholar
  17. 17.
    Podpirka A, Cole MW, Ramanathan S (2008) Appl Phys Lett 92:212906CrossRefGoogle Scholar
  18. 18.
    Cole MW, Joshi PC, Ervin MH (2001) J Appl Phys 89(11):6336CrossRefGoogle Scholar
  19. 19.
    Pervez NK, Hansen PJ, York RA (2004) Appl Phys Lett 85:4451CrossRefGoogle Scholar
  20. 20.
    Horwitz JS, Chang W, Kim W, Qadri SB, Pond JM, Kirchoefer SW, Chrisey DB (2000) J Electroceram 4(2–3):357CrossRefGoogle Scholar
  21. 21.
    Joo J-H, Seon J-M, Jeon Y-C, Oh K-Y, Roh J-S, Kim J-J (1997) Appl Phys Lett 70:3053CrossRefGoogle Scholar
  22. 22.
    Tsuchiya M, Shutthanandan V, Engelhard MH, Ramanathan S (2008) Appl Phys Lett 93:263109CrossRefGoogle Scholar
  23. 23.
    Wu Y, Jacobs EG, Pinizzotto RF, Tu R, Liu HY, Summerfelt SR, Grande BE (1995) Mater Res Soc Symp Proc 361:269CrossRefGoogle Scholar
  24. 24.
    Pontes FM, Longo E, Leite ER, Varela JA (2001) Thin Solid Films 386(1):91CrossRefGoogle Scholar
  25. 25.
    Wu L, Wu S, Chang F-C, Shen Y-T, Chen Y-C (2000) J Mater Sci 35:5945. doi: https://doi.org/10.1023/A:1026722206381 CrossRefGoogle Scholar
  26. 26.
    Cole MW, Ngo E, Hirsch S, Demaree JD, Zhong S, Alpay SP (2007) J Appl Phys 102:034104CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Melanie W. Cole
    • 1
    Email author
  • Adrian Podpirka
    • 2
  • Shriram Ramanathan
    • 2
  1. 1.U.S. Army Research LaboratoryWeapons and Materials Research DirectorateAberdeenUSA
  2. 2.School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA

Personalised recommendations