Advertisement

Journal of Materials Science

, Volume 44, Issue 19, pp 5256–5262 | Cite as

Effect of uniaxial stress on the electromechanical properties in ferroelectric thin films under combined loadings

  • Hai-Xia CaoEmail author
  • Veng Cheong Lo
  • Zhen-Ya Li
Ferroelectrics

Abstract

The electromechanical properties of ferroelectric thin films under an alternating electric field and a static uniaxial compressive stress are investigated using the modified planar four-state Potts model. To implement the electromechanical properties and the coupling of the electrical and mechanical response, the mechanical energy density as well as the energy due to anisotropic switching between a-domain and c-domain are incorporated in the Hamiltonian. Besides, there are two contributions to the strain at each cell: eigenstrain and elastic strain. Our simulation results show that the longitudinal strain-electric field butterfly loop shifts downward along strain axis and that for the transverse strain shifts upward as the stress magnitude is increased. Moreover, the polarization-electric field hysteresis loop becomes a double-loop under a large compressive stress. The piezoelectric coefficient increases with the stress magnitude and reaches a maximum value at a critical stress level. It then gradually decreases to a small value at large stress magnitudes. Our results qualitatively agree with experimental ones.

Keywords

Piezoelectric Coefficient Domain Switching Ferroelectric Thin Film Electromechanical Property Loop Area 

Notes

Acknowledgements

This work was supported by the Research Grant of the Hong Kong Polytechnic University under the Grant No. 1-ZV44, the National Natural Science Foundation of China under the Grant Nos. 10474069 and 50832002, the Natural Science Foundation of JiangSu Education Committee of China under the Grant No. 08KJB140006. One of authors, H.X. Cao, was supported by the Jiangsu Government Scholarship for Overseas Studies.

References

  1. 1.
    Zhou QF, Zhang QQ, Yoshimura T et al (2003) Appl Phys Lett 82:4767CrossRefGoogle Scholar
  2. 2.
    Zhao P, Li J (2008) J Appl Phys 103:104104CrossRefGoogle Scholar
  3. 3.
    Tan X, Jo W, Granzow T et al (2009) Appl Phys Lett 94:042909CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Grigoriev A, Do DH, Kim DM et al (2006) Phys Rev Lett 96:187601CrossRefGoogle Scholar
  6. 6.
    Fu H, Bellaiche L (2003) Phys Rev Lett 91:057601CrossRefGoogle Scholar
  7. 7.
    Zhou D, Kamlah M (2004) J Appl Phys 96:6634CrossRefGoogle Scholar
  8. 8.
    Chaplya PM, Mitrovic M, Carman GP et al (2006) J Appl Phys 100:124111CrossRefGoogle Scholar
  9. 9.
    Duan Y, Shi H, Qin L (2008) J Phys Condens Matter 20:175210CrossRefGoogle Scholar
  10. 10.
    Burcsu E, Ravichandran G, Bhattacharya K (2004) J Mech Phys Solids 52:823CrossRefGoogle Scholar
  11. 11.
    Park JH, Park J, Lee KB, Koo TY et al (2007) Appl Phys Lett 91:012906CrossRefGoogle Scholar
  12. 12.
    Shieh J, Yeh JH, Shu YC et al (2007) Appl Phys Lett 91:062901CrossRefGoogle Scholar
  13. 13.
    Jones JL, Hoffman M, Daniels JE et al (2006) Appl Phys Lett 89:092901CrossRefGoogle Scholar
  14. 14.
    Osone S, Shimojo Y, Brinkman K et al (2007) Appl Phys Lett 90:262905CrossRefGoogle Scholar
  15. 15.
    Achuthan A, Sun CT (2005) J Appl Phys 97:114103CrossRefGoogle Scholar
  16. 16.
    Suchanicz J, Sitko D, Kim-Ngan NTH et al (2008) J Appl Phys 104:094106CrossRefGoogle Scholar
  17. 17.
    Fu D, Suzuki K, Kato K (2003) Appl Phys Lett 82:2130CrossRefGoogle Scholar
  18. 18.
    Budimir M, Damjanovic D, Setter N (2005) Phys Rev B 72:064107CrossRefGoogle Scholar
  19. 19.
    Emelyanov AY, Pertsev NA, Kholkin AL (2002) Phys Rev B 66:214108CrossRefGoogle Scholar
  20. 20.
    Yang G, Yue Z, Sun T et al (2008) J Phys D Appl Phys 41:045307CrossRefGoogle Scholar
  21. 21.
    Liu JM, Chan HL, Choy CL (2002) Mater Lett 52:213CrossRefGoogle Scholar
  22. 22.
    Liu JM, Lau ST, Chan HLW, Choy CL (2006) J Mater Sci 41:163. doi: https://doi.org/10.1007/s10853-005-6016-3 CrossRefGoogle Scholar
  23. 23.
    Cao HX, Lo VC, Chung WWY (2006) J Appl Phys 99:024103CrossRefGoogle Scholar
  24. 24.
    Li WF, Weng GJ (2002) J Appl Phys 91:3806CrossRefGoogle Scholar
  25. 25.
    Li FX, Fang DN, Liu YM (2006) J Appl Phys 100:084101CrossRefGoogle Scholar
  26. 26.
    Li KT, Lo VC (2005) J Appl Phys 97:034107CrossRefGoogle Scholar
  27. 27.
    Granzow T, Suvaci E, Kungl H et al (2006) Appl Phys Lett 89:262908CrossRefGoogle Scholar
  28. 28.
    Zhou D, Kamlah M, Munz D (2005) J Eur Ceram Soc 25:425CrossRefGoogle Scholar
  29. 29.
    Lynch CS (1996) Acta Mater 44:4137CrossRefGoogle Scholar
  30. 30.
    Zhao J, Zhang QM (1996) Proc ISAF IEEE Symp, p 971Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Physics, Jiangsu Key Laboratory of Thin FilmsSoochow UniversitySuzhouChina
  2. 2.Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong KongChina

Personalised recommendations