Journal of Materials Science

, Volume 44, Issue 19, pp 5364–5374 | Cite as

Compositionally graded ferroelectric multilayers for frequency agile tunable devices

  • C. V. Weiss
  • M. B. Okatan
  • S. P. AlpayEmail author
  • M. W. Cole
  • E. Ngo
  • R. C. Toonen


Recently, there has been significant interest toward the development of tunable dielectric materials for voltage-controlled, frequency-agile phase shifters and filters operating in the microwave regime. The fundamental challenge in designing materials systems for such tunable devices is the simultaneous requirement of high dielectric tunability (>40%) over a large temperature interval (−10 °C to +90 °C) coupled with low dielectric losses (between 3.0 dB and 4.0 dB in operational bandwidths ranging from several hundred MHz up to 30 or more GHz). We show that a high- and temperature-insensitive tunability can be realized in compositionally graded ferroelectrics and provide a brief review of the results of experimental and theoretical studies on the dielectric properties of Barium Strontium Titanate (Ba1−xSrxTiO3 or BST) multilayer heterostructures. Theoretically, we discuss the role of thermal stresses on the dielectric properties using a non-linear thermodynamic model coupled with basic electrostatic considerations to describe the interlayer interactions between the ferroelectric layers. We show that the thermal strains arising from the thermal expansion coefficient mismatch between the multilayered film and the substrate may have a significant effect on the dielectric permittivity and tunability of BST multilayers. Experimentally, compositionally graded BST multilayers (5 mol% MgO doped and undoped) were grown via metallo-organic solution deposition (MOSD) on Pt–Si substrates and electrically characterized. Optimum conditions were found to exist in BST multilayers consisting of three distinct layers of ~220 nm nominal thickness with compositions corresponding to Ba0.60Sr0.40TiO3 (BST 60/40), BST 75/25, and BST 90/10. At room temperature, the BST heterostructure has a small-signal dielectric permittivity of 360 with a dissipation factor of 0.012 and a dielectric tunability of 65% at 444 kV/cm. These properties exhibit minimal dispersion as a function of temperature ranging from 90 °C to −10 °C. Our results also show that MgO doping improves dielectric loss (tan δ = 0.008), but results in a moderate dielectric tunability of 29% at 444 kV/cm. Electrical measurements at microwave frequencies display a decrease in the dielectric permittivity and tunability for both undoped and MgO-doped BST multilayers. At 10 GHz, the dielectric response, tunability, and the loss characteristics for graded undoped BST are 261, 25% (at 1,778 kV/cm), and 0.078, respectively, and 189 and 15% (at 1,778 kV/cm), and 0.039, respectively, for the MgO-doped graded BST.


Multilayer Film Dielectric Response Barium Strontium Titanate Acceptor Doping Atomic Force Microscopy Micrographs 



This study at UConn was supported by the U.S. Army Research Office through Grants W911NF-05-1-0528 and W911NF-08-C-0124. The authors would like to thank C. Hubbard for the XRD measurements, and S. Hirsch for the SEM analysis.


  1. 1.
    Lancaster MJ, Powell J, Porch A (1998) Supercond Sci Tech 11:1323CrossRefGoogle Scholar
  2. 2.
    Tagantsev AK, Sherman VO, Astafiev KF, Venkatesh J, Setter N (2003) J Electroceram 11:5CrossRefGoogle Scholar
  3. 3.
    Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics, 2nd edn. Wiley, New YorkGoogle Scholar
  4. 4.
    Pertsev NA, Zembilgotov AG, Tagantsev AK (1998) Phys Rev Lett 80:1988CrossRefGoogle Scholar
  5. 5.
    Pertsev NA, Tagantsev AK, Setter N (2000) Phys Rev B 61:R825CrossRefGoogle Scholar
  6. 6.
    Landolt H, Bornstein R (1981) Numerical data and functional relationships in science and technology. Springer, BerlinGoogle Scholar
  7. 7.
    Yamada T (1972) J Appl Phys 43:328CrossRefGoogle Scholar
  8. 8.
    Hilton AD, Ricketts BW (1996) J Phys D: Appl Phys 29:1321CrossRefGoogle Scholar
  9. 9.
    Bao P, Jackson TJ, Wang X, Lancaster MJ (2008) J Phys D: Appl Phys 41:1Google Scholar
  10. 10.
    Vendik OG, Hollmann EK, Kozyrev AB, Prudan AM (1999) J Supercond 12:325CrossRefGoogle Scholar
  11. 11.
    Wu L, Wu S, Chang FC, Shen YT, Chen YC (2000) J Mater Sci 35:5945. doi: CrossRefGoogle Scholar
  12. 12.
    Cole MW, Weiss CV, Ngo E, Hirsch S, Coryell LA, Alpay SP (2008) Appl Phys Lett 92:182906CrossRefGoogle Scholar
  13. 13.
    Cole MW, Hubbard C, Ngo E, Ervin M, Wood M, Geyer RG (2002) J Appl Phys 92:475CrossRefGoogle Scholar
  14. 14.
    Ban ZG, Alpay SP (2002) J Appl Phys 91:9288CrossRefGoogle Scholar
  15. 15.
    Ban ZG, Alpay SP (2003) J Appl Phys 93:504CrossRefGoogle Scholar
  16. 16.
    Shaw TM, Suo Z, Huang M, Liniger E, Laibowitz RB, Baniecki JD (1999) Appl Phys Lett 75:2129CrossRefGoogle Scholar
  17. 17.
    Zhong S, Alpay SP, Mantese JV (2006) Appl Phys Lett 88:132904CrossRefGoogle Scholar
  18. 18.
    Cole MW, Joshi PC, Ervin MH (2001) J Appl Phys 89:6336CrossRefGoogle Scholar
  19. 19.
    Podpirka A, Cole MW, Ramanathan S (2008) Appl Phys Lett 92:212906CrossRefGoogle Scholar
  20. 20.
    Cole MW, Nothwang WD, Hubbard C, Ngo E, Ervin MH (2003) J Appl Phys 93:9218CrossRefGoogle Scholar
  21. 21.
    Cole MW, Joshi PC, Ervin MH, Wood MC, Pfeffer RL (2000) Thin Solid Films 374:34CrossRefGoogle Scholar
  22. 22.
    Li YL, Choudhury S, Haeni JH, Biegalski MD, Vasudevarao A, Sharan A, Ma HZ, Levy J, Gopalan V, Trolier-McKinstry S, Schlom DG, Jia QX, Chen LQ (2006) Phys Rev B 73:184112CrossRefGoogle Scholar
  23. 23.
    Qin WF, Ai WY, Zhu J, Xiong J, Tang JL, Zhang Y, Li YR (2007) J Mater Sci 42:8707. doi: CrossRefGoogle Scholar
  24. 24.
    Catalan G, Janssens A, Rispens G, Csiszar S, Seeck O, Rijnders G, Blank DHA, Noheda B (2006) Phys Rev Lett 96:127602CrossRefGoogle Scholar
  25. 25.
    Roytburd AL, Alpay SP, Nagarajan V, Ganpule CS, Aggarwal S, Williams ED, Ramesh R (2000) Phys Rev Lett 85:190CrossRefGoogle Scholar
  26. 26.
    Ederer C, Spaldin NA (2005) Phys Rev Lett 95:257601CrossRefGoogle Scholar
  27. 27.
    Schlom DG, Chen LQ, Eom CB, Rabe KM, Streiffer SK, Triscone JM (2007) Ann Rev Mater Res 37:589CrossRefGoogle Scholar
  28. 28.
    Kwak BS, Erbil A, Budai JD, Chisholm MF, Boatner LA, Wilkens BJ (1994) Phys Rev B 49:14865CrossRefGoogle Scholar
  29. 29.
    Zhang LC, Vasiliev AL, Misirlioglu IB, Ramesh R, Alpay SP, Aindow M (2008) Appl Phys Lett 93:262903CrossRefGoogle Scholar
  30. 30.
    Speck JS, Daykin AC, Seifert A, Romanov AE, Pompe W (1995) J Appl Phys 78:1696CrossRefGoogle Scholar
  31. 31.
    Misirlioglu IB, Vasiliev AL, Alpay SP, Aindow M, Ramesh R (2006) J Mater Sci 41:697. doi: CrossRefGoogle Scholar
  32. 32.
    Misirlioglu IB, Alpay SP, Aindow M, Nagarajan V (2006) Appl Phys Lett 88:102906CrossRefGoogle Scholar
  33. 33.
    Misirlioglu IB, Vasiliev AL, Aindow M, Alpay SP, Ramesh R (2004) Appl Phys Lett 84:1742CrossRefGoogle Scholar
  34. 34.
    Vrejoiu I, Le Rhun G, Zakharov ND, Hesse D, Pintilie L, Alexe M (2006) Philos Mag 86:4477CrossRefGoogle Scholar
  35. 35.
    Sharma A, Ban ZG, Alpay SP, Mantese JV (2004) Appl Phys Lett 85:985CrossRefGoogle Scholar
  36. 36.
    Akcay G, Zhong S, Allimi BS, Alpay SP, Mantese JV (2007) Appl Phys Lett 91:012904CrossRefGoogle Scholar
  37. 37.
    Okatan MB, Cole MW, Alpay SP (2008) J Appl Phys 104:104107CrossRefGoogle Scholar
  38. 38.
    Tsai MS, Sun SC, Tseng TY (1997) J Appl Phys 82:3482CrossRefGoogle Scholar
  39. 39.
    Lu SG, Zhu XH, Mak CL, Wong KH, Chan HLW, Choy CL (2003) Appl Phys Lett 82:2877CrossRefGoogle Scholar
  40. 40.
    Jain M, Majumder SB, Katiyar RS, Miranda FA, Van Keuls FW (2003) Appl Phys Lett 82:1911CrossRefGoogle Scholar
  41. 41.
    Saravanan KV, Raju KCJ, Krishna MG, Bhatnagar AK (2007) J Mater Sci 42:1149. doi: CrossRefGoogle Scholar
  42. 42.
    Zhu X, Lu S, Chan HLW, Choy CL, Wong KH (2003) Appl Phys A: Mater Sci Process 76:225CrossRefGoogle Scholar
  43. 43.
    Cole MW, Ngo E, Hirsch S, Demaree JD, Zhong S, Alpay SP (2007) J Appl Phys 102:034104CrossRefGoogle Scholar
  44. 44.
    Jiang Q, Gao YH, Cao HX (2004) Phys Lett A 331:117CrossRefGoogle Scholar
  45. 45.
    Tian HY, Luo WG, Pu XH, Qiu PS, He XY, Ding AL (2001) Solid State Commun 117:315CrossRefGoogle Scholar
  46. 46.
    Zhu X, Chan HLW, Choy CL, Wong KH (2002) J Vac Sci Tech A: Vac Surf Films 20:1796CrossRefGoogle Scholar
  47. 47.
    Zhu XH, Chong N, Chan HLW, Choy CL, Wong KH, Liu Z, Ming N (2002) Appl Phys Lett 80:3376CrossRefGoogle Scholar
  48. 48.
    Kim WJ, Chang W, Qadri SB, Pond JM, Kirchoefer SW, Chrisey DB, Horwitz JS (2000) Appl Phys Lett 76:1185CrossRefGoogle Scholar
  49. 49.
    Okhay O, Wu AY, Vilarinho PM (2005) J Eur Ceram Soc 25:3079CrossRefGoogle Scholar
  50. 50.
    Elissalde C, Ravez J (2001) J Mater Chem 11:1957CrossRefGoogle Scholar
  51. 51.
    Su B, Button TW (2004) J Appl Phys 95:1382CrossRefGoogle Scholar
  52. 52.
    Cole MW, Ngo E, Hirsch S, Okatan MB, Alpay SP (2008) Appl Phys Lett 92:072906CrossRefGoogle Scholar
  53. 53.
    Su B, Button TW, Price T, Iddles D, Cannell D (2008) J Mater Sci 43:847. doi: CrossRefGoogle Scholar
  54. 54.
    Weiss CV, Cole MW, Alpay SP, Ngo E, Toonen RC, Hirsch SG, Demaree JD, Hubbard C (2008) Integr Ferroelectr 100:36CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • C. V. Weiss
    • 1
  • M. B. Okatan
    • 1
  • S. P. Alpay
    • 1
    Email author
  • M. W. Cole
    • 2
  • E. Ngo
    • 2
  • R. C. Toonen
    • 2
  1. 1.Materials Science and Engineering Program and Institute of Materials ScienceUniversity of ConnecticutStorrsUSA
  2. 2.Weapons and Materials Research Directorate, Active Materials Research Group, U.S. Army Research LaboratoryAberdeen Proving GroundUSA

Personalised recommendations