Journal of Materials Science

, Volume 44, Issue 13, pp 3600–3607 | Cite as

One-pot synthesis of ordered mesoporous carbon–silica nanocomposites templated by mixed amphiphilic block copolymers

  • Y. R. LiuEmail author


Mixed amphiphilic block copolymers of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO–PPO–PEO) and polydimethylsiloxane-poly(ethylene oxide) (PDMS–PEO) have been successfully used as co-templates to prepare ordered mesoporous polymer–silica and carbon–silica nanocomposites by using phenolic resol polymer as a carbon precursor via the strategy of evaporation-induced self-assembly (EISA). The ordered mesoporous materials of 2-D hexagonal (p6m) mesostructures have been achieved, as confirmed by small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and nitrogen-sorption measurements. Experiments show that using PDMS–PEO as co-template can enlarge the pore sizes and reduce the framework shrinkage of the materials without evident effect on the specific surface areas. Ordered mesoporous carbons can then be obtained with large pore sizes of 6.7 nm, pore volumes of 0.52 cm3/g, and high surface areas of 578 m2/g. The mixed micelles formed between the hydrophobic PDMS groups and the PPO chains of the F127 molecules should be responsible for the variation of the pore sizes of the resulting mesoporous materials. Through the study of characteristics of mesoporous carbon and mesoporous silica derived from mother carbon–silica nanocomposites, we think mesoporous carbon–silica nanocomposites with the silica-coating mesostructure can be formed after the pyrolysis of the PDMS–PEO diblock copolymer during surfactant removal process. Such method can be thought as the combination of surfactant removal and silica incorporation into one-step. This simple one-pot route provides a pathway for large-scale convenient synthesis of ordered mesostructured nanocomposite materials.


PDMS Block Copolymer Mesoporous Silica Triblock Copolymer Diblock Copolymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Callone E, Fletcher JM, Carturan G, Raj R (2008) J Mater Sci 43(14):4862. doi: CrossRefGoogle Scholar
  2. 2.
    Warren SC, Messina LC, Slaughter LS, Kamperman M, Zhou Q, Gruner SM, Disalvo FJ, Wiesner U (2008) Science 320(5884):1752CrossRefGoogle Scholar
  3. 3.
    Jinnai H, Shinbori Y, Kitaoka T, Akutagawa K, Mashita N, Nishi T (2007) Macromolecules 40(18):6758CrossRefGoogle Scholar
  4. 4.
    Shen SD, Deng Y, Zhu GB, Mao DS, Wang YH, Wu GS, Li J, Liu XZ, Lu GZ, Zhao DY (2007) J Mater Sci 42(17):7057. doi: CrossRefGoogle Scholar
  5. 5.
    Wei Y, Jin DL, Yang CC, Kels MC, Qiu KY (1998) Mater Sci Eng C 6:91CrossRefGoogle Scholar
  6. 6.
    Nagarale RK, Gohil GS, Shahi VK, Rangarajan R (2004) Macromolecules 37(26):10023CrossRefGoogle Scholar
  7. 7.
    Chen M, Zhou SX, You B, Wu LM (2005) Macromolecules 38(15):6411CrossRefGoogle Scholar
  8. 8.
    Scott BJ, Wirnsberger G, Stucky GD (2001) Chem Mater 13(10):3140CrossRefGoogle Scholar
  9. 9.
    Wan Y, Min YL, Yu SH (2008) Langmuir 24(9):5024CrossRefGoogle Scholar
  10. 10.
    Zhai YP, Tu B, Zhao DY (2009) J Mater Chem 19(1):131CrossRefGoogle Scholar
  11. 11.
    Wang ZM, Hohsinoo K, Shishibori K, Kanoh H, Ooi K (2003) Chem Mater 15(15):2926CrossRefGoogle Scholar
  12. 12.
    Lee J, Kim J, Lee Y, Yoon S, Oh SM, Hyeon T (2004) Chem Mater 16(17):3323CrossRefGoogle Scholar
  13. 13.
    Wang ZM, Shishibori K, Hohsinoo K, Kanoh H, Hirotsu T (2006) Carbon 44(12):2479CrossRefGoogle Scholar
  14. 14.
    Choi M, Kleitz F, Liu DN, Lee HY, Ahn WS, Ryoo R (2005) J Am Chem Soc 127(6):1924CrossRefGoogle Scholar
  15. 15.
    Asefa T, MacLachan MJ, Coombs N, Ozin GA (1999) Nature 402(6764):867CrossRefGoogle Scholar
  16. 16.
    Inagaki S, Guan S, Fukushima Y, Ohsuna T, Terasaki O (1999) J Am Chem Soc 121(41):9611CrossRefGoogle Scholar
  17. 17.
    Hunks WJ, Ozin GA (2004) Chem Mater 16(25):5465CrossRefGoogle Scholar
  18. 18.
    Yang ZX, Xia YD, Robert M (2006) J Mater Chem 33(16):3417CrossRefGoogle Scholar
  19. 19.
    Coutinho D, Gorman B, Ferraris JP, Yang DJ, Balkus KJ (2006) Microporous Mesoporous Mater 91(1–3):276CrossRefGoogle Scholar
  20. 20.
    Sayari A, Yang Y (2005) Chem Mater 17(24):6108CrossRefGoogle Scholar
  21. 21.
    Hu QY, Kou R, Pang JB, Ward TL, Cai M, Yang ZZ, Lu YF, Tang J (2007) Chem Commun 6:601CrossRefGoogle Scholar
  22. 22.
    Liu RL, Shi YF, Meng Y, Zhang FQ, Gu D, Chen ZX, Tu B, Zhao DY (2006) J Am Chem Soc 128(35):11652CrossRefGoogle Scholar
  23. 23.
    Haesslin HW, Eicke HF (1984) Makromolekulare Chemie 185:2625CrossRefGoogle Scholar
  24. 24.
    Haesslin HW (1985) Makromolekulare Chemie 186:357CrossRefGoogle Scholar
  25. 25.
    Zolth KA, Terence C, Brian V (1993) Langmuir 9(5):1258CrossRefGoogle Scholar
  26. 26.
    Hewitt DG, Lin J (1998) J Polym Sci Part A Polym Chem 36(7):1093CrossRefGoogle Scholar
  27. 27.
    Zhang ZR, Gottlieb M (1999) Thermochimica Acta 336(1):133CrossRefGoogle Scholar
  28. 28.
    Xu AW (2002) Chem Mater 14(9):3625CrossRefGoogle Scholar
  29. 29.
    Xu AW (2002) J Phys Chem B 106(51):13161CrossRefGoogle Scholar
  30. 30.
    Husing N, Launay B, Bauer J, Kickelbick G (2003) J Sol-Gel Sci Technol 26(1–3):609CrossRefGoogle Scholar
  31. 31.
    Jan K, Julian C, Chert-Tsun Y, Nicholas AAR, Simon JH (2004) Polymer 45(18):6111CrossRefGoogle Scholar
  32. 32.
    Metha R, Paradorn N, Pranee P (2005) Polymer 46(23):9742CrossRefGoogle Scholar
  33. 33.
    Guido K, Josef B, Nicola H, Martin A, Krister H (2005) Colloids Surf A Physicochem Eng Asp 254(1–3):37Google Scholar
  34. 34.
    Meng Y, Gu D, Zhang FQ, Shi YF, Yang HF, Li Z, Yu CZ, Tu B, Zhao DY (2005) Angew Chem Int Ed 44(43):7053CrossRefGoogle Scholar
  35. 35.
    Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279(5350):548CrossRefGoogle Scholar
  36. 36.
    Wei Y, Jin DL, Yang CC, Wei G (1996) J Sol-Gel Sci Technol 7(3):191CrossRefGoogle Scholar
  37. 37.
    Yang CM, Zibrowius B, Schmidt W, Schuth F (2003) Chem Mater 15(20):3739CrossRefGoogle Scholar
  38. 38.
    Sun DH, Zhang R, Liu ZM, Huang Y, Wang Y, He J, Han BX, Yang GY (2005) Macromolecules 38(13):5617CrossRefGoogle Scholar
  39. 39.
    Trick KA, Saliba TE (1995) Carbon 33(11):1509CrossRefGoogle Scholar
  40. 40.
    Kim J, Lee J, Hyeon T (2004) Carbon 42(12–13):2711CrossRefGoogle Scholar
  41. 41.
    Hecht E, Hoffmann H (1994) Langmuir 10(1):86CrossRefGoogle Scholar
  42. 42.
    McKeown NB, Budd PM, Msayib KJ, Ghanem BS, Kingston HJ, Tattershall CE, Makhseed S, Reynolds KJ, Fritsch D (2005) Chem Eur J 11(9):2610CrossRefGoogle Scholar
  43. 43.
    Wan Y, Yang HF, Zhao DY (2006) Acc Chem Res 39(7):423CrossRefGoogle Scholar
  44. 44.
    Grosso D, Cagnol F, Soler-Illia G, Crepaldi EL, Amenitsch H, Brunet-Bruneau A, Bourgeois A, Sanchez C (2004) Adv Funct Mater 14(4):309CrossRefGoogle Scholar
  45. 45.
    Almgren M, Vanstam J, Lindblad C, Li PY, Stilbs P, Bahadur P (1991) J Phys Chem 95(14):5677CrossRefGoogle Scholar
  46. 46.
    Li Y, Xu R, Couderc S, Bloor DM, Wyn-Jones E, Holzwarth JF (2001) Langmuir 17(1):183CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Material Science, Faculty of Chemistry and Material ScienceShanxi Normal UniversityLinfenPeople’s Republic of China

Personalised recommendations