Journal of Materials Science

, Volume 44, Issue 13, pp 3574–3577 | Cite as

Interfacial shearing strength and reinforcing mechanisms of an epoxy composite reinforced using a carbon nanotube/carbon fiber hybrid

  • Fu-Hua ZhangEmail author
  • Rong-Guo Wang
  • Xiao-Dong He
  • Chao Wang
  • Li-Ning Ren


The performance of a composite material system depends critically on the interfacial characteristics of the reinforcement and the matrix material. In this study, the interfacial shearing strength (IFSS) of a composite with an epoxy matrix and a novel carbon nanotube/carbon fiber (CNT/CF) multi-scale reinforcement was determined by single fiber-microdroplet tensile test, and the interfacial reinforcing mechanisms of the composite were discussed. Results show that the IFSS of the epoxy composite reinforced by CNT/CF is as high as 106.55 MPa, which is 150% higher than that of the as-received T300 fiber composite. And the main interfacial reinforcing mechanisms of this novel composite could be interpreted as chemical bonding, Van der Waals binding, mechanical interlocking, and surface wetting.


Fiber Surface Epoxy Matrix Epoxy Composite Thionyl Chloride Interfacial Shearing Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to Associate Prof. Ming Ren Sun at School of Materials Science and Engineering in Harbin Institute of Technology for the XPS efforts and the foundation for excellent young high education teacher of Shanghai, China, under Grant No. shs08024.


  1. 1.
    He XD, Zhang FH, Wang RG et al (2007) Carbon 45(13):2559CrossRefGoogle Scholar
  2. 2.
    Abdelghani L, Alexandre V, Gérard N et al (2008) Mater Lett 62(3):394CrossRefGoogle Scholar
  3. 3.
    Li WZ, Wang DZ, Yang SX et al (2001) Chem Phys Lett 335(3):141CrossRefGoogle Scholar
  4. 4.
    Thostenson ET, Li WZ, Wang DZ et al (2002) J Appl Phys 91(9):6034CrossRefGoogle Scholar
  5. 5.
    Kin L, Sean L (2001) Appl Phys Lett 79(25):4225CrossRefGoogle Scholar
  6. 6.
    Wagner HD, Lourie O, Feldman Y et al (1998) Appl Phys Lett 72(2):188CrossRefGoogle Scholar
  7. 7.
    Shanahan MER, Bourgès-Monnier C (1996) Int J Adhes Adhes 16:129CrossRefGoogle Scholar
  8. 8.
    Yunmitori S, Nakanishit Y (1996) Composites Part A 27A:1059CrossRefGoogle Scholar
  9. 9.
    Lei ZK, Qiu W, Kang YL et al (2008) Composites Part A 39:113CrossRefGoogle Scholar
  10. 10.
    Eichhorn SJ, Young RJ (2004) Compos Sci Technol 64:767CrossRefGoogle Scholar
  11. 11.
    Shao YL, Wang BX (2002) Acta Materiae Compositae Sinica 19(4):29Google Scholar
  12. 12.
    Jia ZJ, Wang ZY, Xu CL et al (1999) Mater Sci Eng A 271(2):395CrossRefGoogle Scholar
  13. 13.
    Frankland SJV, Caglar A, Brenner DW et al (2002) J Phys Chem B 106(12):3046CrossRefGoogle Scholar
  14. 14.
    Walsh PJ (2001) Constituent Mater 21:35Google Scholar
  15. 15.
    Rashkovan IA, Korabel’nikov YG (1997) Compo Sci Technol 57:1017CrossRefGoogle Scholar
  16. 16.
    Menendez JA, Menendez EM, Iglesias MJ (1999) Carbon 37(7):1115CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Fu-Hua Zhang
    • 1
    Email author
  • Rong-Guo Wang
    • 2
  • Xiao-Dong He
    • 2
  • Chao Wang
    • 2
  • Li-Ning Ren
    • 3
  1. 1.Institute of Marine Materials Science and EngineeringShanghai Maritime UniversityShanghaiChina
  2. 2.Center for Composite MaterialsHarbin Institute of TechnologyHarbinChina
  3. 3.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations