Journal of Materials Science

, Volume 44, Issue 13, pp 3542–3555 | Cite as

Metal oxide-assisted chemical synthesis of poly(α-naphthylamine) and characterizations

  • S. Radhika
  • K. Durai Murugan
  • I. Baskaran
  • V. Dhanalakshmi
  • R. AnbarasanEmail author


α-Naphthylamine (NA) was chemically polymerized using peroxy disulfate (PDS) as a chemical initiator under inert atmosphere at 45 °C with vigorous stirring under various experimental conditions such as different concentrations of NA, PDS and different % weight of nanosized metal oxides like Sb2O3, CrO3, V2O5, Al2O3, As2O3 and ammonium heptamolybdate (AHM). Chemical kinetics inferred that rate of polymerization (Rp) is 1.75 order of reaction with [NA] and 1.0 with [PDS]. FTIR spectroscopy confirmed that both benzenoid and quinonoid rings built up the structure of poly(α-naphthylamine) (PNA). Added metal oxides influenced the Rp, char forming capability of PNA and conductivity too through their surface catalytic effect. AFM confirmed the presence of nanosized materials in the polymer–nanocomposite structure. HRTEM was used to confirm the nanosize of metal oxides and the intercalation of PNA chains into the basal spacing of metal oxides.


PANI V2O5 As2O3 Sb2O3 Naphthylamine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Eftekhari A, Afshani R (2006) J Polym Sci A: Polym Chem 44:3304. doi: CrossRefGoogle Scholar
  2. 2.
    Fonseca M, Rinaldi A, Rubira AF, Cotica LF (2006) Mater Chem Phys 97:252. doi: CrossRefGoogle Scholar
  3. 3.
    Gupta N, Sharma S, Mir IA (2006) J Sci Ind Res 65:549Google Scholar
  4. 4.
    Baghahi SM, Beigi AM, Legheri A, Teymouri M (2002) Iran Polym J 11:387Google Scholar
  5. 5.
    Entazami A, Golabi SM, Raof J (1992) Iran J Polym Sci Technol 1:7Google Scholar
  6. 6.
    Genies EM, Lapkowski M (1987) Electrochim Acta 32:1223CrossRefGoogle Scholar
  7. 7.
    Li X, Sun C, Wei Z (2005) Synth Met 155:45. doi: CrossRefGoogle Scholar
  8. 8.
    Moon DK, Osakada K, Kubota K (1993) Macromolecules 26:6992. doi: CrossRefGoogle Scholar
  9. 9.
    Schmitz BK, Euler WB (1995) J Electronal Chem 399:47CrossRefGoogle Scholar
  10. 10.
    Arevalo AH, Fernandez H, Silber JJ, Sereno L (1990) Electrochim Acta 35:741CrossRefGoogle Scholar
  11. 11.
    Xu X, Xie O, Hu M, Nie L, Yao S (1995) J Electroanal Chem 389:85CrossRefGoogle Scholar
  12. 12.
    Roy BC, Gupta MD, Bowmick L, Ray JK (2003) Bull Mater Sci 26:633CrossRefGoogle Scholar
  13. 13.
    George V, Young DY (2002) Polymer 43:4073CrossRefGoogle Scholar
  14. 14.
    Gordana CM, Cvjeticani N, Simendic JB, Krakovsky I (2003) Polym Bull 50:319. doi: CrossRefGoogle Scholar
  15. 15.
    Faria R, Bulhoes L (1998) Electrochim Acta 44:95CrossRefGoogle Scholar
  16. 16.
    Huang SS, Li J, Lin HG, Yu RO (1995) Mikrochim Acta 117:145CrossRefGoogle Scholar
  17. 17.
    Gordana CM, Marjanovic B, Antic V, Juramic I (2002) J Serb Chem Soc 67:867CrossRefGoogle Scholar
  18. 18.
    Omrani A, Simon LC, Rostami AA, Ghaemy M (2008) Int J Chem Kinet 40:663. doi: CrossRefGoogle Scholar
  19. 19.
    Svegl F, Orel B (2003) Mater Technol 37:29Google Scholar
  20. 20.
    Copikova J, Synytsya A, Novotna M (2001) Czech J Food Sci 19:51CrossRefGoogle Scholar
  21. 21.
    Wang JS, Shi JS, Wu JG (2003) World J Gastroenterol 9:1897CrossRefGoogle Scholar
  22. 22.
    Xueref I, Domine F (2003) Atmos Chem Phys 3:1779CrossRefGoogle Scholar
  23. 23.
    Matkovic SM, Valle GM, Briand LE (2005) Latin Am Appl Phys 35:189Google Scholar
  24. 24.
    Schwendtner K, Libowitzky E, Koss S (2003) Geophys Res Abstr 5:06826Google Scholar
  25. 25.
    Asimow PD, Stein LC, Rinsman GR (2006) Am Mineral 91:278. doi: CrossRefGoogle Scholar
  26. 26.
    van de Voort FR, Sedman J, Mucciardi C (2004) Appl Spectrosc 58:193CrossRefGoogle Scholar
  27. 27.
    Parker JR, Waddell WH (1996) J Elast Plast 28:140CrossRefGoogle Scholar
  28. 28.
    Saule M, Navarre S, Babout O, Maillard B (2003) Macromolecules 36:7469. doi: CrossRefGoogle Scholar
  29. 29.
    Saule M, Navarre S, Babout O, Maillard B (2005) Macromolecules 38:77. doi: CrossRefGoogle Scholar
  30. 30.
    Navarre S, Maillard B (2000) J Polym Sci Part A Chem Ed 38:2957. doi: 10.1099-0518-(20000815)38:16%3c2957CrossRefGoogle Scholar
  31. 31.
    Anbarasan R, Babout O, Dequiel M, Maillard B (2005) J Appl Polym Sci 97:761. doi: CrossRefGoogle Scholar
  32. 32.
    Anbarasan R, Babout O, Dequiel M, Maillard B (2005) J Appl Polym Sci 97:766. doi: CrossRefGoogle Scholar
  33. 33.
    Duraimurugan K, Rathiga S, Baskaran I, Anbarasan R (2008) Chin J Polym Sci 26:393. doi: CrossRefGoogle Scholar
  34. 34.
    Anbarasan R, Anandhakrishnan R, Vivek G (2008) Polym Compos 29:949. doi: CrossRefGoogle Scholar
  35. 35.
    Chang Q, Zhao K, Chen X, Li M, Liu J (2008) J Mater Sci 43:5861. doi: CrossRefGoogle Scholar
  36. 36.
    Anbarasan R, Sivakumaravel S, Gopiganesh G (2006) Int J Polym Mater 55:803CrossRefGoogle Scholar
  37. 37.
    Ma J, Zhang X, Yan C, Tong Z, Inoue H (2008) J Mater Sci 43:5534. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • S. Radhika
    • 1
  • K. Durai Murugan
    • 1
  • I. Baskaran
    • 1
  • V. Dhanalakshmi
    • 2
  • R. Anbarasan
    • 3
    Email author
  1. 1.Department of ChemistryS.N. CollegeMaduraiIndia
  2. 2.Department of Polymer TechnologyKCETVirudhunagarTamil NaduIndia
  3. 3.Department of Chemical Engineering, Nano Biotechnology Research LaboratoryNational Taiwan UniversityTaipeiTaiwan, ROC

Personalised recommendations