Advertisement

Journal of Materials Science

, Volume 44, Issue 13, pp 3476–3482 | Cite as

Multiwalled carbon nanotubes functionalized with 7-octenyltrichlorosilane and n-octyltrichlorosilane: dispersion in Sylgard®184 silicone and Young’s modulus

  • Laurence Vast
  • Luc Carpentier
  • Fabrice Lallemand
  • Jean-François Colomer
  • Gustaaf Van Tendeloo
  • Antonio Fonseca
  • János B. Nagy
  • Zineb Mekhalif
  • Joseph DelhalleEmail author
Article

Abstract

Sylgard®184/multiwalled carbon nanotube (MWNT) composites have been prepared by in situ polymerization using purified and functionalized multiwalled carbon nanotubes (f-MWNTs) as fillers. Surface modification of the MWNTs has been carried out by silanization with 7-octenyltrichlorosilane (7OTCS) and n-octyltrichlorosilane (nOTCS). The modification and dispersion of the carbon nanotubes in composites were characterized by X-ray photoelectron spectroscopy (XPS), transmission electron spectroscopy (TEM), and high-resolution transmission electron spectroscopy (HRTEM). Young’s modulus results were derived from indentation testing. It is shown that the terminal-vinyl group of 7OTCS molecules plays an essential role for both the dispersion of the f-MWNTs in the composite and its mechanical properties. At loading as low as 0.2 wt%, the Young’s modulus is shown to increase up to 50%. This is interpreted as resulting from a combination of the good compatibility in the forming silicone matrix of the MWNTs coated with a siloxane network, on the one hand, and the covalent links created between the terminal-vinyl groups and the host matrix in formation, on the other hand.

Keywords

HRTEM PDMS Silicone Rubber Host Matrix Trichlorosilanes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This study was supported through BINANOCO project (02/1/5221) of the Walloon Region and the “Belgian National Interuniversity Research Program on quantum size effects in nanostructure materials” (IUAP P5/01). J.-F.·C. is supported by the Belgian FNRS in his capacity as a postdoctoral researcher. The authors are grateful to Dr. F. De Buyl (Dow Corning, Belgium) for supplying Sylgard®184 and to Drs A. Destrée and N. Moreau for providing the raw CNTs used in this study.

References

  1. 1.
    Ijima S (1991) Nature 354:56CrossRefGoogle Scholar
  2. 2.
    Fiedler B, Gojny FH, Wichmann MHG, Nolte MCM, Schulte K (2006) Compos Sci Technol 66:3115CrossRefGoogle Scholar
  3. 3.
    Coleman JN, Cadek M, Ryan KP, Fonseca A, Nagy JB, Blau WJ, Ferreira MS (2006) Polymer 47:8556CrossRefGoogle Scholar
  4. 4.
    Nagy JB, Coleman JN, Fonseca A, Destrée A, Mekhalif Z, Moreau N, Vast L, Delhalle J (2006) Nanopages 1:121CrossRefGoogle Scholar
  5. 5.
    Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Carbon 44:1624CrossRefGoogle Scholar
  6. 6.
    Frogley MD, Ravich D, Wagner HD (2003) Compos Sci Technol 63:1647CrossRefGoogle Scholar
  7. 7.
    Sim LC, Ramanan SR, Islail H, Seetharamu KN, Goh TJ (2005) Thermochim Acta 430:155CrossRefGoogle Scholar
  8. 8.
    Ahir SV, Terentjev EM (2006) Nature Mater 4:491CrossRefGoogle Scholar
  9. 9.
    Jung YJ, Kar S, Talapatra S, Soldano C, Viswanathan G, Li X, Yao Z, Ou FS, Avadhanula A, Vajtai R, Curran S, Nalamasu O, Ajayan PM (2006) Nanoletters 6:413CrossRefGoogle Scholar
  10. 10.
    Alexandre M, Dubois P, Devalckenaere M, Claes M (2007) Patent WO 2007048208Google Scholar
  11. 11.
    Chen GX, Kim HS, Park BH, Yoon JS (2006) Carbon 44:3348CrossRefGoogle Scholar
  12. 12.
    Amiran J, Nicolosi V, Bergin SD, Khan U, Lyons PE, Coleman JN (2008) J Phys Chem C 112:3519CrossRefGoogle Scholar
  13. 13.
    Vast L, Mekhalif Z, Fonseca A, Nagy JB, Delhalle J (2007) Compos Sci Technol 67:880CrossRefGoogle Scholar
  14. 14.
    Vast L, Philippin G, Destrée A, Moreau N, Fonseca A, Nagy JB, Delhalle J, Mekhalif Z (2004) Nanotechnology 15:781CrossRefGoogle Scholar
  15. 15.
    Vast L, Rochez O, Azoulay A, Fonseca A, Nagy JB, Deniau G, Palacin S, Delhalle J, Mekhalif Z (2007) J Nanosci Nanotechnol 7:3404CrossRefGoogle Scholar
  16. 16.
    Vast L, Laffineur F, Delhalle J, Fonseca A, Nagy JB, Mekhalif Z (2007) J Nanosci Nanotechnol 7:3411CrossRefGoogle Scholar
  17. 17.
    Velasco-Santos C, Martinez-Hernandez AL, Lozada-Cassour M, Alvarez-Castillo A, Castano VM (2002) Nanotechnology 13:495CrossRefGoogle Scholar
  18. 18.
    Ma PC, Kim JK, Thang BZ (2006) Carbon 44:3232CrossRefGoogle Scholar
  19. 19.
    Kathi J, Rhee KY (2008) J Mater Sci 43:33. doi: https://doi.org/10.1007/s10853-007-2209-2 CrossRefGoogle Scholar
  20. 20.
    Willems I, Kónya Z, Colomer JF, Van Tendeloo G, Nagaraju N, Fonseca A, Nagy JB (2000) Chem Phys Lett 317:71CrossRefGoogle Scholar
  21. 21.
    Vast L, Delhalle J, Mekhalif Z (2009) Int J Adhes Adhes 29:286CrossRefGoogle Scholar
  22. 22.
    Bai JB, Allaoui A (2003) Compos A: Appl Sci Manufact 34:689CrossRefGoogle Scholar
  23. 23.
    Song YS, Youn JR (2005) Carbon 43:1378CrossRefGoogle Scholar
  24. 24.
    Ma PC, Kim JK, Tang BZ (2007) Compos Sci Technol 67:2965CrossRefGoogle Scholar
  25. 25.
    Zhou C, Wang S, Lu L, Zhang Y, Zhang Y (2008) Compos Sci Technol 68:1727CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Laurence Vast
    • 1
  • Luc Carpentier
    • 2
  • Fabrice Lallemand
    • 3
  • Jean-François Colomer
    • 4
  • Gustaaf Van Tendeloo
    • 4
  • Antonio Fonseca
    • 1
  • János B. Nagy
    • 1
  • Zineb Mekhalif
    • 1
  • Joseph Delhalle
    • 1
    Email author
  1. 1.Laboratoire de Chimie et d’Electrochimie des SurfacesFacultés Universitaires Notre-Dame de la PaixNamurBelgium
  2. 2.Microanalyse des Surfaces (MAS), DMAFemto STBesançon CedexFrance
  3. 3.Institut UTINAM UMR-Université de Franche Comté/CNRS-6213BesançonFrance
  4. 4.EMAUniversity of AntwerpAntwerpBelgium

Personalised recommendations