Journal of Materials Science

, Volume 44, Issue 13, pp 3472–3475 | Cite as

Magnetic transitions and magnetocaloric effects in Fe0.75Mn1.35As

  • N. K. SunEmail author
  • D. Li
  • Z. D. Zhang


In Fe0.75Mn1.35As compound, a metamagnetic transition from an antiferromagnetic phase to a ferrimagnetic phase can be induced above its phase transition temperature Ts = 165 K by an external magnetic field, which leads to large magnetocaloric effects around Ts. The sign of the magnetic entropy change ΔSM in the Fe0.75Mn1.35As compound is negative, not as expected as an inverse magnetocaloric effect, and the maximum value of ΔSM is 4.2 J/kg K at 167.5 K for a magnetic field change of 5 T. Although it induces an irreversible lattice expansion, the cycling of a magnetic field does not induce an irreversible change in the magnetic transitions and magnetocaloric behaviors. The antiferromagnetism-related metamagnetic transitions with a large magnetic entropy change may provide with an opportunity in searching novel materials for magnetic refrigeration.


Magnetic Transition Magnetocaloric Effect Magnetic Entropy Change Magnetic Refrigeration Magnetic Field Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by the National Natural Science Foundation of China under Grant No. 50331030.


  1. 1.
    Warburg E (1881) Ann Phys Chem (Leipzig) 13:141CrossRefGoogle Scholar
  2. 2.
    Zimm CB, Jastrab A, Sternberg A, Pecharsky VK, Gschneidner KA Jr, Osborne M, Anderson I (1998) Adv Cryog Eng 43:1759CrossRefGoogle Scholar
  3. 3.
    Glanz J (1998) Science 279:2045CrossRefGoogle Scholar
  4. 4.
    Tegus O, Brück E, Buschow KHJ, de Boer FR (2002) Nature 415:150CrossRefGoogle Scholar
  5. 5.
    de Campos A, Rocco DL, Carvalho AMG, Caron L, Coelho AA, Gama S, da Silva LM, Gandra FCG, dos Santos AO, Cardoso LP, von Ranke PJ, de Oliveira NA (2006) Nat Mater 5:802CrossRefGoogle Scholar
  6. 6.
    Hu FX, Shen BG, Sun JR, Cheng ZH, Rao GH, Zhang XX (2001) Appl Phys Lett 78:3675CrossRefGoogle Scholar
  7. 7.
    Fujita A, Fujieda S, Hasegawa Y, Fukamichi K (2003) Phys Rev B 67:104416CrossRefGoogle Scholar
  8. 8.
    Annaorazov MP, Nikitin SA, Tyurin AL, Asatryan KA, Dovletov AKh (1996) J Appl Phys 79:1689CrossRefGoogle Scholar
  9. 9.
    Yu MH, Lewis LH, Moodenbaugh AR (2003) J Appl Phys 93:10128CrossRefGoogle Scholar
  10. 10.
    Chattopadhyay MK, Manekar MA, Roy SB (2006) J Phys D Appl Phys 39:1006CrossRefGoogle Scholar
  11. 11.
    Tegus O, Brück E, Zhang L, Dagula W, Buschow KHJ, de Boer FR (2002) Physica B 319:174CrossRefGoogle Scholar
  12. 12.
    Du J, Cui WB, Zhang Q, Ma S, Xiong DK, Zhang ZD (2007) Appl Phys Lett 90:042510CrossRefGoogle Scholar
  13. 13.
    Zhang YQ, Zhang ZD (2004) J Alloys Comp 365:35CrossRefGoogle Scholar
  14. 14.
    Sun NK, Ma S, Zhang Q, Du J, Zhang ZD (2007) Appl Phys Lett 91:112503CrossRefGoogle Scholar
  15. 15.
    Rosenberg RM, Cloud WH, Darnell FJ, Flippen RB (1967) Phys Lett 25A:723CrossRefGoogle Scholar
  16. 16.
    Rosenberg RM, Cloud WH, Darnell FG, Flippen RB, Butler SR (1969) J Appl Phys 40:1361CrossRefGoogle Scholar
  17. 17.
    Kanomata T, Goto T, Ido H (1977) J Phys Soc Japan 43:1178CrossRefGoogle Scholar
  18. 18.
    Sun NK, Li YB, Li D, Zhang Q, Feng WJ, Zhang ZD (2006) Phys Rev B 74:172402CrossRefGoogle Scholar
  19. 19.
    Krenke T, Duman E, Acet M, Wassermann EF (2007) Phys Rev B 75:104414CrossRefGoogle Scholar
  20. 20.
    Pecharsky VK, Gschneidner KA Jr (1997) Phys Rev Lett 78:4494CrossRefGoogle Scholar
  21. 21.
    Kim WS, Chi EO, Kim JC, Hur NH, Lee KW, Choi YN (2003) Phys Rev B 68:172402CrossRefGoogle Scholar
  22. 22.
    Krenke T, Duman E, Acet M, Wassermann EF, Moya X, Manosa L, Planes A (2005) Nat Mater 4:450CrossRefGoogle Scholar
  23. 23.
    Gschneidner KA Jr, Pecharsky VK, Tsokol AO (2005) Rep Prog Phys 68:1479CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of ScienceShenyang Ligong UniversityShenyangPeople’s Republic of China
  2. 2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, and International Centre for Materials PhysicsChinese Academy of SciencesShenyangPeople’s Republic of China

Personalised recommendations