Advertisement

Journal of Materials Science

, Volume 44, Issue 13, pp 3466–3471 | Cite as

ZrO2 foams for porous radiant burners

  • Sergio Yesid GómezEmail author
  • J. A. Escobar
  • O. A. Alvarez
  • C. R. Rambo
  • A. P. Novaes de Oliveira
  • D. Hotza
Article

Abstract

In this work, Y2O3-stabilized ZrO2 (YSZ) foams with low relative density were developed through the replication method, for application as porous radiant burners. The ceramic foams were produced by impregnation of open-cell polyurethane foams with aqueous suspensions and different fractions of raw materials: ZrO2–8% Y2O3 (8YSZ) powder, and additives. The materials were milled for 10–40 min. The impregnated foams were dried and submitted to a heat treatment for polyurethane elimination at 1000 °C for 1 h, with subsequent sintering of the remaining ceramic structure at 1600 °C for 2 h, which resulted in YSZ foams with low relative density (0.07). The structural analysis revealed a cellular structure with an average mechanical strength of 95.6 kPa. The radiation efficiency (>19%) was obtained by tests with different air/fuel ratio. The ceramic matrixes exhibited high performance and structural integrity at high operation temperatures (1400 °C).

Keywords

Foam Equivalence Ratio Polyurethane Foam Ceramic Structure Ceramic Foam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are grateful to Capes and CNPq/Brazil for funding this work. The authors are equally grateful to labCET (UFSC) for their collaboration with the porous burner’s test.

References

  1. 1.
    Jugjai S, Rungsimuntuchart N (2002) Exp Therm Fluid Sci 26:581CrossRefGoogle Scholar
  2. 2.
    Scheffler M, Colombo P (2005) Cellular ceramics structure: manufacturing properties and applications. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  3. 3.
    Bone W (1913) J Franklin Inst 2:101Google Scholar
  4. 4.
    Lucke C (1913) J Ind Eng Chem 5:801CrossRefGoogle Scholar
  5. 5.
    Trimis D, Wawrzinek K, Hatzfeld O, Lucka K, Rutsche A, Haase F, Krüger K, Küchen C (2001) In: Proceedings of the 6th international conference on technologies and combustion for a clear environment, Porto, p 717Google Scholar
  6. 6.
    Hayashi TC, Malico I, Pereira JCF (2004) Comput Struct 82:1543CrossRefGoogle Scholar
  7. 7.
    Mößbauer S, Pickenäcker O, Pickernäcker K, Trimis D (1999) In: Proceedings of the 5th international conference on technologies and combustion for a clean environment, Lisbon, p 519Google Scholar
  8. 8.
    Schwartzwalder K, Somers AV (1963) US Patent 3 090 094, MayGoogle Scholar
  9. 9.
    Sousa E, Rambo CR, Hotza DD, Oliveira APN, Fey T, Greil P (2007) Mater Sci Eng A. doi: https://doi.org/10.1016/j.msea.2007.05.098 CrossRefGoogle Scholar
  10. 10.
    Pereira F (2002) Medição de Características Térmicas e Estudo do Mecanismo de Estabilização de Chama em Queimadores Porosos Radiantes. Thesis (Master in Mechanical Engineering) UFSC, Brazil, 102 pGoogle Scholar
  11. 11.
    Gibson LJ, Asbhy MF (1997) Cellular solids: structure and properties. Cambridge University Press, LondonCrossRefGoogle Scholar
  12. 12.
    Xinwen Z, Dongliang J, Shouhong T (2002) Mater Res Bull 37:541CrossRefGoogle Scholar
  13. 13.
    Botella M (2005) Reología de Suspensiones Cerámicas. Consejo Superior de Investigaciones Científicas (CSIC), MadridGoogle Scholar
  14. 14.
    Vedula VR, Green DJ, Hellman JR (1999) J Am Ceram Soc 82(3):649CrossRefGoogle Scholar
  15. 15.
    Elverum PJ, Ellzey JL, Kovar D (2005) J Mater Sci 40:155. doi: https://doi.org/10.1007/s10853-005-5701-6 CrossRefGoogle Scholar
  16. 16.
    Khannan R, Goel R, Ellzey JL (1994) Combust Sci Technol 99:133CrossRefGoogle Scholar
  17. 17.
    Pereira FM, Catapan RC, Oliveira AAM (2005) Development of a radiant porous burner with a combined thermal and fluidynamic mechanism of flame stabilization. In: 18th international congress of mechanical engineering, Ouro Preto, Brazil, 2005Google Scholar
  18. 18.
    Barra AJ, Ellzey JL (2004) Combust Flame 137:230CrossRefGoogle Scholar
  19. 19.
    Orenstein RM, Green DJ (1992) J Am Ceram Soc 75(7):1899CrossRefGoogle Scholar
  20. 20.
    Brezny R, Green DJ (1989) J Am Ceram Soc 72(7):1145CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Sergio Yesid Gómez
    • 1
    • 2
    Email author
  • J. A. Escobar
    • 1
  • O. A. Alvarez
    • 1
    • 2
  • C. R. Rambo
    • 3
  • A. P. Novaes de Oliveira
    • 3
  • D. Hotza
    • 3
  1. 1.Group of Materials and Manufacture (CIPP-CIPEM), Department of Mechanical EngineeringUniversity of Los AndesBogotaColombia
  2. 2.Design of Products and Processes Group (GDPP), Department of Chemical EngineeringUniversity of los AndesBogotaColombia
  3. 3.Group of Ceramic and Glass Materials (CERMAT), Departments of Chemical and Mechanical Engineering (EQA/EMC)Federal University of Santa Catarina—UFSCFlorianópolisBrazil

Personalised recommendations