Journal of Materials Science

, Volume 44, Issue 13, pp 3457–3461 | Cite as

Synthesis, growth and structural perfection of nonlinear optical material of glycine hydrofluoride (GHF)

  • N. VijayanEmail author
  • G. Bhagavannarayana
  • S. N. Sharma
  • Subhasis Das


In the present communication, we have successfully synthesized the efficient NLO material of glycine hydrofluoride (GHF) by conventional chemical reaction, and grown the single crystal by adopting slow evaporation solution growth technique. In order to know its suitability for device fabrication, different characterization analyses have been performed. The lattice constants have been determined from powder X-ray diffraction (PXRD) method and found that it crystallizes in orthorhombic crystal system. Its crystalline perfection was evaluated by high-resolution X-ray diffraction technique (HRXRD) and the value of FWHM indicates the presence of low angle structural grain boundaries. Its luminescence behaviour has been analysed by photoluminescence (PL) analysis and found maximum luminescence in the lower wavelength region. Its relative second harmonic generation efficiency was evaluated from Kurtz powder technique. The phase matching angle of GHF was determined by using Nd:YAG laser as a source. Its thermal, mechanical and electrical properties were examined by TG/DTA, Vickers microhardness tester and dielectric measurements, respectively.


Nonlinear Optical Material Vickers Hardness Number Crystalline Perfection Laser Damage Threshold Orthorhombic Crystal System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors NV and GBN are very much thankful to Prof. Vikram Kumar, Director, NPL, and B. R. Chakraborty, Head, Materials Characterization Division, for their kind support. One of the authors NV is grateful to Dr. S. K. Halder and Dr. S. K. Dhawan for extending the Powder XRD and TG/DTA facilities. The authors also gratefully acknowledge the technical helps of Dr S. K. Pradhan and Dr M. Pal of Burdwan University.


  1. 1.
    Dmitriev VG, Gurzadyan GG, Nikogosyan DN (1999) Handbook of nonlinear optical crystals. Springer-Verlag, New YorkCrossRefGoogle Scholar
  2. 2.
    Wong MS, Bosshard C, Pan F, Gunter P (1996) Adv Mater 8:677Google Scholar
  3. 3.
    Yabuzaki J, Takahashi Y, Adachi H, Mori Y, Sasaki T (1999) Bull Mater Sci 22:11CrossRefGoogle Scholar
  4. 4.
    Aggarwal MD, Wang WS, Choi J, Chang KJ, Shields AW, Penn BG, Frazier DO (1993) Meas Sci Technol 4:793CrossRefGoogle Scholar
  5. 5.
    Long NJ (1995) Angew Chem 34:21CrossRefGoogle Scholar
  6. 6.
    Jiang MH, Fang Q (1999) Adv Mater 11:1147CrossRefGoogle Scholar
  7. 7.
    Brahadeeswaran S, Bhat HL, Kini NS, Umarji AM, Balaya P, Goyal PS (2000) J Appl Phys 88:5935CrossRefGoogle Scholar
  8. 8.
    Mukerji S, Kar T (2000) Metall Mater Trans A 31:3087CrossRefGoogle Scholar
  9. 9.
    Marcy HO, Rosker MJ, Warren LF, Cunningham PH, Thomas CA, DeLoach LA, Velsko SP, Ebbers CA, Liao JH, Kanatzidis MG (1995) Opt Lett 20:252CrossRefGoogle Scholar
  10. 10.
    Selvaraju K, Valluvan R, Kumararaman S (2006) Mater Lett 60:2848CrossRefGoogle Scholar
  11. 11.
    Lal K, Bhagavannarayana G (1989) J Appl Crystallogr 22:209CrossRefGoogle Scholar
  12. 12.
    Vijayan N, Bhagavannarayana G, Maurya KK, Pal S, Datta SN, Gopalakrishnan R, Ramasamy P (2007) Cryst Res Technol 42:195CrossRefGoogle Scholar
  13. 13.
    Vijayan N, Bhagavannarayana G, Gopalakrishnan R, Ramasamy P (2007) Indian J Chem Sect A 46:70Google Scholar
  14. 14.
    Vijayan N, Bhagavannarayana G, Kanagasekaran T, Ramesh Babu R, Gopalakrishnan R, Ramasamy P (2006) Cryst Res Technol 41:784CrossRefGoogle Scholar
  15. 15.
    Kurtz SK, Perry TT (1968) J Appl Phys 39:3798CrossRefGoogle Scholar
  16. 16.
    Vijayan N, Bhagavannarayana G, Ramesh Babu R, Gopalakrishnan R, Maurya KK, Ramasamy P (2006) Cryst Growth Des 6:1542CrossRefGoogle Scholar
  17. 17.
    Boomadevi S, Mittal HP, Dhanasekaran R (2004) J Cryst Growth 261:55CrossRefGoogle Scholar
  18. 18.
    Bhat HL (1994) Bull Mater Sci 17:1233CrossRefGoogle Scholar
  19. 19.
    Hameed ASH, Ravi G, Dhanasekaran R, Ramasamy P (2000) J Cryst Growth 212:227CrossRefGoogle Scholar
  20. 20.
    Rajan Babu R, Jayaraman D, Kumar RM, Ravi G, Jayavel R (2003) J Cryst Growth 250:157CrossRefGoogle Scholar
  21. 21.
    Vijayan N, Ramesh Babu R, Gunasekaran M, Gopalakrishnan R, Ramasamy P (2003) J Cryst Growth 256:174CrossRefGoogle Scholar
  22. 22.
    Onitch EM (1950) Microskope 95:12Google Scholar
  23. 23.
    Hanneman M (1941) Metall Manchu 23:135Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • N. Vijayan
    • 1
    • 2
    • 5
    Email author
  • G. Bhagavannarayana
    • 1
  • S. N. Sharma
    • 3
  • Subhasis Das
    • 4
  1. 1.Materials Characterization DivisionNational Physical LaboratoryNew DelhiIndia
  2. 2.Dpto. Física de Materiales, Facultad de CienciasUniversidad Autónoma de MadridMadridSpain
  3. 3.Electronic Materials DivisionNational Physical LaboratoryNew DelhiIndia
  4. 4.Department of PhysicsUniversity of BurdwanBardhamanIndia
  5. 5.Crystal Growth and Crystallography SectionNational Physical LaboratoryNew DelhiIndia

Personalised recommendations