Advertisement

Journal of Materials Science

, Volume 44, Issue 13, pp 3438–3444 | Cite as

Particle size-dependent electrical properties of nanocrystalline NiO

  • Salah A. MakhloufEmail author
  • Mohamed A. Kassem
  • M. A. Abdel-Rahim
Article

Abstract

Nickel oxide nanoparticles are formed by chemical precipitation and subsequent drying and calcinations at temperatures ≥523 K. Samples are characterized using X-ray diffraction and BET surface area measurements indicating the formation of a single NiO phase whose crystallite size increases with increasing calcination temperature. The electrical properties are examined by measuring DC and AC conductivities and dielectric properties as functions of temperature. Electrical conductivities first slightly increases with increasing particle size up to 7–10 nm and are about 8 orders of magnitude higher than that of NiO single crystals. Further increasing the particle size above 10 nm, leads to a monotonic decrease of conductivity. The data are discussed in view of variations of grain boundary as well as triple junction volume fractions as the particle size varies. At temperatures above θD/2 (θD is the Debye temperature), the conductivity is ascribed to a band-like conduction due to the large polaron. The activation energy of conduction was found to be minimal for the highly conducting samples of 7–10 nm, and gradually increases to ~0.5 eV with increasing the particle size above 10 nm. For T < θD/2, the conductivity is best described by variable–range–hopping models. Model parameters are thus estimated and presented as functions of particle size. Frequency as well as temperature dependencies of the AC conductivity and dielectric constant exhibit trends usually observed in carrier dominated dielectrics.

Keywords

Triple Junction Nickel Hydroxide Small Polaron Room Temperature Conductivity Large Polaron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The authors are indebted to Dr. H. Alattar for his discussion and Prof. A. A. Bahgat (Al-Azhar University) for critical reading of the manuscript.

References

  1. 1.
    Gleiter H (1989) Prog Mater Sci 33:223CrossRefGoogle Scholar
  2. 2.
    Siegel RW (1990) MRS Bull 15:60CrossRefGoogle Scholar
  3. 3.
    Siegel RW (1991) Annu Rev Mater Sci 21:559CrossRefGoogle Scholar
  4. 4.
    Siegel RW (1991) In: Chan RW (ed) Materials science and technology, vol 15. Processing of metals and alloys. VCH, WienheimGoogle Scholar
  5. 5.
    Gleiter H (1992) Nanostruct Mater 1:1CrossRefGoogle Scholar
  6. 6.
    Siegel RW (1994) In: Fujita FE (ed) Physics of new materials. Springer, BerlinGoogle Scholar
  7. 7.
    Hotovy I, Buc D, Hascik S, Nennewitz O (1998) Vacuum 50:41CrossRefGoogle Scholar
  8. 8.
    Hotovy I, Huran J, Spiess L, Liday J, Sitter H, Hascik S (2003) Vacuum 69:237CrossRefGoogle Scholar
  9. 9.
    Fujii E, Tomozawa A, Torii H, Takayama R (1996) Jpn J Appl Phys 35:L328CrossRefGoogle Scholar
  10. 10.
    Estrada W, Andersson A, Granqvist C (1998) J Appl Phys 64:3678CrossRefGoogle Scholar
  11. 11.
    Azens A, Kullman L, Vaivars G, Nordborg H, Granqvist C (1998) Solid State Ion 113:449CrossRefGoogle Scholar
  12. 12.
    Lee JW, Park IH, Chung CW (2005) Integr Ferroelectr 74:71CrossRefGoogle Scholar
  13. 13.
    Makhlouf SA (2008) Thin Solid Films 516:3112CrossRefGoogle Scholar
  14. 14.
    Patil PS, Kadam LD (2002) Appl Surf Sci 199:211CrossRefGoogle Scholar
  15. 15.
    Boscloo G, Hagfeldt A (2001) J Phys Chem B 105:3039CrossRefGoogle Scholar
  16. 16.
    Biju V, Abdul Khadar M (2001) Mater Res Bull 36:21CrossRefGoogle Scholar
  17. 17.
    Biju V, Abdul Khadar M (2003) J Mater Sci 38:4055. doi: https://doi.org/10.1023/A:1026131103898 CrossRefGoogle Scholar
  18. 18.
    Morin FJ (1954) Phys Rev B 93:1199CrossRefGoogle Scholar
  19. 19.
    Adler D, Feinleib J (1970) Phys Rev B 2:3112CrossRefGoogle Scholar
  20. 20.
    Bosman AJ, Vandaal HJ (1970) Adv Phys 19:1CrossRefGoogle Scholar
  21. 21.
    Pushparajah P, Radhakrishna S (1997) J Mater Sci 32:3001. doi: https://doi.org/10.1023/A:1018657424566 CrossRefGoogle Scholar
  22. 22.
    Bosman AJ, Crevecoeur C (1965) Phys Rev 144:763CrossRefGoogle Scholar
  23. 23.
    Van Houten S (1960) J Phys Chem Solids 17:7CrossRefGoogle Scholar
  24. 24.
    Heikes RR, Johnston WD (1957) J Chem Phys 26:582CrossRefGoogle Scholar
  25. 25.
    Lunkenheimer P, Loidl A, Ottermann CR, Bange K (1991) Phys Rev B 44:5927CrossRefGoogle Scholar
  26. 26.
    Li L, Chen L, Qihe R, Li G (2006) Appl Phys Lett 89:134102CrossRefGoogle Scholar
  27. 27.
    Richardson JT, Yiagas DI, Turk B, Forster K (1991) J Appl Phys 70:6977CrossRefGoogle Scholar
  28. 28.
    Makhlouf SA, Parker FT, Spada FE, Berkowitz AE (1997) J Appl Phys 81:5561CrossRefGoogle Scholar
  29. 29.
    Kotov YA, Bagazeyev AV, Beketov IV, Murzakaev AM, Samatov OM, Medvedev AI, Moskalenko NI, Timoshenkova OR, Demina TM, Shtolts AK (2005) Tech Phys 50:1279. Translated from Zhurnal TekhnicheskoĭFiziki (2005) 75:29Google Scholar
  30. 30.
    Powder Diffraction File JCPDS-International Centre for Diffraction Data (1999) ICDD Card No. 47-1049Google Scholar
  31. 31.
    Williamson GK, Hall WH (1953) Acta Metall 1:22CrossRefGoogle Scholar
  32. 32.
    Holland TJB, Redfern SAT (1997) Miner Mag 61:65CrossRefGoogle Scholar
  33. 33.
    Nunes AC, Yang L (1998) Surf Sci 399:225CrossRefGoogle Scholar
  34. 34.
    Wittenauer MA, Van Zandt LL (1982) Philos Mag B 46:659CrossRefGoogle Scholar
  35. 35.
    Suryanarayan C (1994) Bull Mater Sci 17:307CrossRefGoogle Scholar
  36. 36.
    Bollman W (1984) Philos Mag A 49:73CrossRefGoogle Scholar
  37. 37.
    Meilikhov EZ, Farzetdinova RM (1998) Physica E 3:190CrossRefGoogle Scholar
  38. 38.
    Palumbo G, Thorpe SJ, Aust KT (1990) Scr Metall Mater 24:1347CrossRefGoogle Scholar
  39. 39.
    Snowden DP, Saltzburg H (1965) Phys Rev Lett 14:497CrossRefGoogle Scholar
  40. 40.
    Osburn CM, Vest RW (1971) J Phys Chem Solids 32:1355CrossRefGoogle Scholar
  41. 41.
    Mott NF (1968) J Non-Cryst Solids 1:1CrossRefGoogle Scholar
  42. 42.
    Mott NF (1969) Philo Mag 19:835CrossRefGoogle Scholar
  43. 43.
    Greaves GN (1973) J Non-Cryst Solids 11:427CrossRefGoogle Scholar
  44. 44.
    Elliot SR (1984) Physics of amorphous materials. Longman, London and New YorkGoogle Scholar
  45. 45.
    El-Desoky MM (2003) J Mater Sci Mater Electron 14:215CrossRefGoogle Scholar
  46. 46.
    Austin I, Mott NF (1969) Adv Phys 18:41CrossRefGoogle Scholar
  47. 47.
    Jonscher AK, Reau JM (1978) J Mater Sci 13:563. doi: https://doi.org/10.1007/BF00541806 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Salah A. Makhlouf
    • 1
    Email author
  • Mohamed A. Kassem
    • 1
  • M. A. Abdel-Rahim
    • 1
  1. 1.Department of Physics, Faculty of ScienceAssiut UniversityAssiutEgypt

Personalised recommendations