Advertisement

Journal of Materials Science

, Volume 44, Issue 13, pp 3420–3427 | Cite as

Microstructure and mechanical properties of an Al–Ni–Co intermetallics reinforced Al matrix composite

  • Suling ChengEmail author
  • Gencang Yang
  • Jincheng Wang
  • Changlin Yang
  • Man Zhu
  • Yaohe Zhou
Article

Abstract

A new intermetallic particle reinforced metal matrix composite was produced from pure Al and 15 wt% Al72Ni12Co16 quasicrystalline particles by stir-casting method, followed by hot-extrusion. Microstructural analysis of the as-cast composite shows that the Al72Ni12Co16 quasicrystalline phase has transformed to the crystalline phase Al9(Co, Ni)2 and an eutectic structure has formed in the Al matrix during the casting process. The particle size of the Al9(Co, Ni)2 phase is much smaller than that of the original quasicrystalline particles. After extrusion, the composite has a more uniform distribution of the reinforcement particles and eutectic structure as well as a reduced porosity. Tensile tests indicate that the mechanical properties of the as-cast composite are improved over the matrix properties remarkably, except for the ductility. The strength and ductility of the composite can be improved by the hot-extrusion, while the elastic modulus can be slightly decreased.

Keywords

Ultimate Tensile Strength Reinforcement Particle Extrude Sample Quasicrystalline Phase Particle Reinforce Metal Matrix Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 50571081) and the Aviation Foundation of China (Grant No. 04G53024).

References

  1. 1.
    Lloyd DJ (1994) Int Mater Rev 39:1CrossRefGoogle Scholar
  2. 2.
    Tsai AP, Suenaga H, Ohmori M, Yokoyama Y, Inoue A, Masumoto T (1992) Jpn J Appl Phys 31:2530CrossRefGoogle Scholar
  3. 3.
    Tsai AP, Aoki K, Inoue A, Masumoto T (1993) J Mater Res 8:5CrossRefGoogle Scholar
  4. 4.
    Lee SM, Jung JH, Fleury E, Kim WT, Kim DH (2000) Mater Sci Eng 294–296:99CrossRefGoogle Scholar
  5. 5.
    Tang F, Anderson IE, Gnaupel-Herold T, Prask H (2004) Mater Sci Eng A 383:362CrossRefGoogle Scholar
  6. 6.
    Kaloshkin SD, Tcherdyntsev VV, Laptev AI (2004) J Mater Sci 39:5399. doi: https://doi.org/10.1023/B:JMSC.0000039253.28721.3f CrossRefGoogle Scholar
  7. 7.
    Tsai AP, Inoue A, Masumoto T (1989) Mater Trans JIM 30:463CrossRefGoogle Scholar
  8. 8.
    Gödecke T, Scheffer M, Lück R, Ritsch S, Beeli C (1998) Z Metallkd 89:687Google Scholar
  9. 9.
    Poddar P, Srivastava VC, De PK, Sahoo KL (2007) Mater Sci Eng A 460–461:357CrossRefGoogle Scholar
  10. 10.
    Bindumadhavan PN, Chia TK, Chandrasedkaran M (2001) Mater Sci Eng A 315:217CrossRefGoogle Scholar
  11. 11.
    Cöcen Ü, Önel K (1996) Mater Sci Eng A 221:187CrossRefGoogle Scholar
  12. 12.
    Samuel AM, Gotmare A, Samuel FH (1995) Compos Sci Technol 53:301CrossRefGoogle Scholar
  13. 13.
    Tekmen C, Ozdemir I, Cocen U, Onel K (2003) Mater Sci Eng A 360:365CrossRefGoogle Scholar
  14. 14.
    Seo YH, Kang CG (1999) Compos Sci Technol 59:643CrossRefGoogle Scholar
  15. 15.
    Rahmani Fard R, Akhlaghi F (2007) J Mater Process Technol 187–188:433CrossRefGoogle Scholar
  16. 16.
    Onat A, Akbulut H, Yilmaz F (2007) J Alloy Compd 436:375CrossRefGoogle Scholar
  17. 17.
    Shorowordi KM, Laoui T, Haseeb ASMA, Celis JP, Froyen L (2003) J Mater Process Technol 142:738CrossRefGoogle Scholar
  18. 18.
    Banerji A, Surappa MK, Rohatgi PK (1983) Metall Trans B 14:273CrossRefGoogle Scholar
  19. 19.
    Banerji A, Rohatgi PK (1982) J Mater Sci 17:335. doi: https://doi.org/10.1007/BF00591467 CrossRefGoogle Scholar
  20. 20.
    Rohatgi PK, Pai BC, Panda SC (1979) J Mater Sci 14:2277. doi: https://doi.org/10.1007/BF00737014 CrossRefGoogle Scholar
  21. 21.
    Raynor GV, Pfeil PCL (1947) J Inst Metals 73:609Google Scholar
  22. 22.
    Cöcen Ü, Önel K (2002) Compos Sci Technol 62:275CrossRefGoogle Scholar
  23. 23.
    Tham LM, Gupta M, Cheng L (2002) Mater Sci Eng A 326:355CrossRefGoogle Scholar
  24. 24.
    Davies CHJ, Chen W-S, Lloyd DJ, Hawbolt EB, Samarasekera IV, Brimacombe JK (1996) Metall Mater Trans A 274:113Google Scholar
  25. 25.
    Zhong WM, L’Espérance G, Suéry M (1996) Mater Sci Eng A 214:93CrossRefGoogle Scholar
  26. 26.
    Davies CHJ, Chen W-S, Hawbolt EB, Samarasekera IV, Brimacombe JK (1995) Scr Metall Mater 32:309CrossRefGoogle Scholar
  27. 27.
    Lloyd DJ (1991) Acta Metall Mater 39:59CrossRefGoogle Scholar
  28. 28.
    Yi HZ, Ma NH, Zhang YJ, Li XF, Wang HW (2006) Scr Mater 54:1093CrossRefGoogle Scholar
  29. 29.
    Tham LM, Su L, Cheng L, Gupta M (1999) Mater Res Bull 34:71CrossRefGoogle Scholar
  30. 30.
    Tan MJ, Koh LH, Khor KA, Boey FYC (1993) J Mater Process Technol 37:391CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Suling Cheng
    • 1
    Email author
  • Gencang Yang
    • 1
  • Jincheng Wang
    • 1
  • Changlin Yang
    • 1
  • Man Zhu
    • 1
  • Yaohe Zhou
    • 1
  1. 1.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations