Advertisement

Journal of Materials Science

, Volume 44, Issue 12, pp 3305–3314 | Cite as

Isothermal fatigue behavior of cast superalloy Inconel 792-5A at 23 and 900 °C

  • Karel ObrtlíkEmail author
  • Martin Petrenec
  • Jiří Man
  • Jaroslav Polák
  • Karel Hrbáček
Article

Abstract

Total strain-controlled tests have been performed on cylindrical specimens of polycrystalline Inconel 792-5A at 23 and 900 °C to study the effect of temperature on low cycle fatigue characteristics and cyclic strain localization. Hardening/softening curves, cyclic stress–strain curves, and fatigue life curves are presented. Two linear dependencies are used to approximate the room temperature data in Manson–Coffin plot. Technique of oriented foils observed in transmission electron microscope is used to study dislocation structure. Effect of temperature on surface relief topography and fracture surface is documented using scanning electron microscopy and atomic force microscopy. High-amplitude straining is characterized by slight initial hardening followed by saturation at room temperature and sustained weak softening at 900 °C. Low-amplitude cycling results in the stable stress response. Plastic strain localization into persistent slip bands lying along {111} slip planes was observed at both temperatures.

Keywords

Fatigue Life Strain Amplitude Slip Band Surface Relief Plastic Strain Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research was supported by the Grants Nos. 106/07/1507 of the Grant Agency of the Czech Republic and 1QS200410502 of the Academy of Sciences of the Czech Republic and by the project No. FI-IM/025 of the Ministry of Industry and Trade.

References

  1. 1.
    Bradley EF (ed) (1988) Superalloys: a technical guide. ASM International, Metal ParkGoogle Scholar
  2. 2.
    Donachie MJ, Donachie SJ (2002) Superalloys: a technical guide. ASM International, Materials ParkGoogle Scholar
  3. 3.
    Beck T, Pitz G, Lang K-H et al (1997) Mater Sci Eng A 234–236:719CrossRefGoogle Scholar
  4. 4.
    Shahinian P, Sadananda K (1989) Mater Sci Eng A 108:131CrossRefGoogle Scholar
  5. 5.
    Polák J (1991) Cyclic plasticity and low cycle fatigue life of metals. Elsevier, AmsterdamGoogle Scholar
  6. 6.
    Mughrabi H (1999) In: Wu XR, Wang ZG (eds) Proceedings of the seventh international fatigue congress (FATIGUE ‘99). Higher Education Press, Beijing, p 1967Google Scholar
  7. 7.
    Merrick HF (1974) Metall Trans 5:891CrossRefGoogle Scholar
  8. 8.
    Clavel M, Pineau A (1982) Mater Sci Eng 55:157CrossRefGoogle Scholar
  9. 9.
    Fritzemeier LG, Tien JK (1988) Acta Metall 36:275CrossRefGoogle Scholar
  10. 10.
    Worthem DW, Robertson IM, Leckie FA et al (1990) Metall Trans A 21:3215CrossRefGoogle Scholar
  11. 11.
    Sundararaman M, Chen W, Singh V et al (1990) Acta Metall Mater 38:1813CrossRefGoogle Scholar
  12. 12.
    Jiao F, Zhu J, Wahi RP et al (1992) In: Rie K-T (ed) Low cycle fatigue and elasto-plastic behaviour of materials, vol 3. Elsevier, London, p 298CrossRefGoogle Scholar
  13. 13.
    Raman SGS, Padmanabhan KA (1994) Int J Fatigue 16:209CrossRefGoogle Scholar
  14. 14.
    Betge D, Österle W, Ziebs J (1995) Scr Metall Mater 32:1601CrossRefGoogle Scholar
  15. 15.
    Ye D, Ping D, Wang Z et al (2004) Mater Sci Eng A 373:54CrossRefGoogle Scholar
  16. 16.
    Petrenec M, Obrtlík K, Polák J (2005) Mater Sci Eng A 400–401:485CrossRefGoogle Scholar
  17. 17.
    Obrtlík K, Man J, Petrenec M et al (2002) In: Blom AF (ed) Proceedings of the eight international fatigue congress (FATIGUE 2002). EMAS, West Midlands, UK, p 963Google Scholar
  18. 18.
    Risbet M, Feaugas X, Guillemer-Neel C et al (2003) Scr Mater 49:533CrossRefGoogle Scholar
  19. 19.
    Harvey SE, Marsh PG, Gerberich WW (1994) Acta Metall Mater 42:3493CrossRefGoogle Scholar
  20. 20.
    Vinogradov A (2007) J Mater Sci 42:1797. doi: https://doi.org/10.1007/s10853-006-0973-z CrossRefGoogle Scholar
  21. 21.
    Cretegny L, Saxena A (2001) Acta Mater 49:3755CrossRefGoogle Scholar
  22. 22.
    Man J, Obrtlík K, Blochwitz C et al (2002) Acta Mater 50:3767CrossRefGoogle Scholar
  23. 23.
    Villechaise P, Sabatier L, Girard JC (2002) Mater Sci Eng A 323:377CrossRefGoogle Scholar
  24. 24.
    Man J, Obrtlík K, Polák J (2003) Mater Sci Eng A 351:123CrossRefGoogle Scholar
  25. 25.
    Polák J, Man J, Obrtlík K (2003) Int J Fatigue 25:1027CrossRefGoogle Scholar
  26. 26.
    Polák J, Man J, Obrtlík K et al (2003) Z Metallkd 94:1327CrossRefGoogle Scholar
  27. 27.
    Man J, Petrenec M, Obrtlík K et al (2004) Acta Mater 52:5551CrossRefGoogle Scholar
  28. 28.
    Cabbibo M, Gariboldi E, Spigarelli S et al (2008) J Mater Sci 43:2912. doi: https://doi.org/10.1007/s10853-007-1803-7 CrossRefGoogle Scholar
  29. 29.
    Blochwitz Ch, Brechbühl J, Tirschler W (1996) Mater Sci Eng A 210:42CrossRefGoogle Scholar
  30. 30.
    Mughrabi H, Bayerlein M, Wang R (1991) In: Brandon DG, Chaim R, Rosen A (eds) Proceedings of the ninth international conference on strength of metals and alloys (ICSMA 9), vol 2. Freund, London, p 879Google Scholar
  31. 31.
    Essmann U, Gösele U, Mughrabi H (1981) Philos Mag A 44:405CrossRefGoogle Scholar
  32. 32.
    Polák J (1987) Mater Sci Eng 92:71CrossRefGoogle Scholar
  33. 33.
    Klesnil M, Lukáš P (1992) Fatigue of metallic materials. Academia, PragueGoogle Scholar
  34. 34.
    Westbrooke EF, Forero LE, Ebrahimi F (2005) Acta Mater 53:2137CrossRefGoogle Scholar
  35. 35.
    Chieragatti R, Remy L (1991) Mater Sci Eng A 141:11CrossRefGoogle Scholar
  36. 36.
    Österle W, Betge D, Fedelich B et al (2000) Acta Mater 48:689CrossRefGoogle Scholar
  37. 37.
    Lukáš P, Kunz L (2002) Mater Sci Eng A 322:217CrossRefGoogle Scholar
  38. 38.
    Polák J (2003) In: Milne I, Ritchie RO, Karihaloo B (eds) Comprehensive structural integrity, vol 4. Elsevier, Amsterdam, p 1Google Scholar
  39. 39.
    Chu Z, Yu J, Sun X et al (2008) Mater Sci Eng A 488:389CrossRefGoogle Scholar
  40. 40.
    Krupp U (2008) J Mater Sci 43:3908. doi: https://doi.org/10.1007/s10853-007-2363-6 CrossRefGoogle Scholar
  41. 41.
    Reuchet J, Remy L (1983) Mater Sci Eng 58:19CrossRefGoogle Scholar
  42. 42.
    Mughrabi H (1996) In: Lütjering G, Nowack H (eds) Proceedings of the sixth international fatigue congress (FATIGUE ‘96), vol 1. Elsevier, Oxford, p 57Google Scholar
  43. 43.
    Polák J, Obrtlík K, Hájek M (1994) Fatigue Fract Eng Mater Struct 17:773CrossRefGoogle Scholar
  44. 44.
    Obrtlík K, Lukáš P, Polák J (1998) In: Rie K-T, Portella PD (eds) Low cycle fatigue and elasto-plastic behaviour of materials, vol 4. Elsevier, Amsterdam, p 33Google Scholar
  45. 45.
    Mughrabi H (1978) Mater Sci Eng 33:207CrossRefGoogle Scholar
  46. 46.
    Kunz L, Lukáš P, Mintách R et al (2006) Metall Mater 44:275Google Scholar
  47. 47.
    Huang Y, Langdon TG (2007) J Mater Sci 42:421. doi: https://doi.org/10.1007/s10853-006-0483-z CrossRefGoogle Scholar
  48. 48.
    Sauzay M (2007) Acta Mater 55:1193CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Karel Obrtlík
    • 1
    Email author
  • Martin Petrenec
    • 1
  • Jiří Man
    • 1
  • Jaroslav Polák
    • 1
  • Karel Hrbáček
    • 2
  1. 1.Institute of Physics of MaterialsAS CRBrnoCzech Republic
  2. 2.První brněnská strojírna Velká Bíteš, a.s.Velká BítešCzech Republic

Personalised recommendations