Advertisement

Journal of Materials Science

, Volume 44, Issue 13, pp 3364–3369 | Cite as

Hydrothermal synthesis and luminescence properties of core-shell-structured PS@SrCO3:Tb3+ spherical particles

  • Y. Y. Zhang
  • J. L. Liu
  • Y. X. Zhu
  • Y. Shang
  • M. YuEmail author
  • X. Huang
Article

Abstract

Nanocrystalline SrCO3:Tb3+ phosphor layers were coated on monodisperse and spherical polystyrene particles by a typical hydrothermal synthesis without further annealing treatment, resulting in the formation of core-shell-structured polystyrene@SrCO3:Tb3+ particles. X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, photoluminescence, as well as lifetimes were employed to characterize the resulting composite particles. Under ultraviolet excitation, the polystyrene@SrCO3:Tb3+ phosphors show the characteristic 5D47FJ (J = 6, 5, 4, 3) emission lines with green emission 5D47F5 (544 nm) as the most prominent group. The obtained core-shell phosphors are potentially applied in fluorescent lamps.

Keywords

SrCO3 Phosphor Layer Luminescence Decay Curve Strong Green Emission Terbium Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This project is financially supported by the Training Fund of NENU’S Scientific Innovation Project (NENU-STC07014).

References

  1. 1.
    Schartl W (2000) Adv Mater 12:1899CrossRefGoogle Scholar
  2. 2.
    Caruso F (2001) Adv Mater 13:11CrossRefGoogle Scholar
  3. 3.
    Suryanarayanan V, Nair AS, Tom RT (2004) J Mater Chem 14:2661CrossRefGoogle Scholar
  4. 4.
    Oldenberg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Chem Phys Lett 288:243CrossRefGoogle Scholar
  5. 5.
    LizMarzan LM, Giersig M, Mulvaney P (1996) Langmuir 12:4329CrossRefGoogle Scholar
  6. 6.
    Lu Y, Yin Y, Li ZY, Xia Y (2002) Nano Lett 2:785CrossRefGoogle Scholar
  7. 7.
    Caruso RA, Antonietti M (2001) Chem Mater 13:3272CrossRefGoogle Scholar
  8. 8.
    Schuetzand P, Caruso F (2002) Chem Mater 14:4509CrossRefGoogle Scholar
  9. 9.
    Hall SR, Davis SA, Mann S (2000) Langmuir 16:1454CrossRefGoogle Scholar
  10. 10.
    Salgueirino-Maceira V, Spasova M, Farle M (2005) Adv Funct Mater 15:1036CrossRefGoogle Scholar
  11. 11.
    Liu S, Han M (2005) Adv Funct Mater 15:961CrossRefGoogle Scholar
  12. 12.
    Peng XG, Schlamp MC, Kadacanich AV, Alicisatos AP (1997) J Am Chem Soc 119:7019CrossRefGoogle Scholar
  13. 13.
    Wilson WL, Szajowski PF, Brus LE (1993) Science 262:1242CrossRefGoogle Scholar
  14. 14.
    Hardikar VV, Matijevic′ E (2000) J Colloid Interface Sci 221:133CrossRefGoogle Scholar
  15. 15.
    Lei Y, Chim WK (2005) J Am Chem Soc 127:1487CrossRefGoogle Scholar
  16. 16.
    Giesche H, Matijevic′ E (1994) J Mater Res 9:436CrossRefGoogle Scholar
  17. 17.
    Liu GX, Hong GY (2005) J Solid State Chem 178:1647CrossRefGoogle Scholar
  18. 18.
    Ocana M, Gonzalez-Elipe AR (1999) Colloid Surf A 157:315CrossRefGoogle Scholar
  19. 19.
    Dokoutchaev A, James JT, Koene SC, Pathak S, Prakash GKS, Thompson ME (1999) Chem Mater 11:2389CrossRefGoogle Scholar
  20. 20.
    Yu M, Lin J, Fang J (2005) Chem Mater 17:1783CrossRefGoogle Scholar
  21. 21.
    Wang H, Lin CK, Liu XM, Lin J, Yu M (2005) Appl Phys Lett 87:181907CrossRefGoogle Scholar
  22. 22.
    Yu M, Wang H, Lin CK, Li GZ, Lin J (2006) Nanotechnology 17:3245CrossRefGoogle Scholar
  23. 23.
    Wang H, Yu M, Lin CK, Liu XM, Lin J (2007) J Phys Chem C 111:11223CrossRefGoogle Scholar
  24. 24.
    Chang KW, Wu JJ (2005) Adv Mater 17:241CrossRefGoogle Scholar
  25. 25.
    Bastow TJ (2002) Chem Phys Lett 354:156CrossRefGoogle Scholar
  26. 26.
    Du JM, Liu ZM, Li ZH, Han BX, Huang Y, Zhang JL (2005) Microporous Mesoporous Mater 83:145CrossRefGoogle Scholar
  27. 27.
    Rautaray D, Sainkar SR, Sastry M (2003) Langmuir 19:888CrossRefGoogle Scholar
  28. 28.
    Rautaray D, Sanyal A, Adyanthaya SD, Ahmad A, Sastry M (2004) Langmuir 20:6827CrossRefGoogle Scholar
  29. 29.
    Sondi I, Matijevic E (2003) Chem Mater 15:1322CrossRefGoogle Scholar
  30. 30.
    Aizenberg J, Black AJ, Whitesides GM (1999) J Am Chem Soc 121:4500CrossRefGoogle Scholar
  31. 31.
    Küther J, Bartz M, Seshadri R, Vaughane GBM, Tremela W (2001) J Mater Chem 11:503CrossRefGoogle Scholar
  32. 32.
    Küther J, Nelles G, Seshadri R, Schaub M, Butt HJ, Tremela W (1998) Chem Eur J 4:1834CrossRefGoogle Scholar
  33. 33.
    Küther J, Seshadri R, Tremela W (1998) Angew Chem Int Ed 37:3044CrossRefGoogle Scholar
  34. 34.
    Cao MH, Wu XL, He XY, Hu CG (2005) Langmuir 21:6093CrossRefGoogle Scholar
  35. 35.
    Li SZ, Zhang H, Xu J, Yang DR (2005) Mater Lett 59:420CrossRefGoogle Scholar
  36. 36.
    Huang Q, Gao L, Cai Y, Aldinger F (2004) Chem Lett 33:290CrossRefGoogle Scholar
  37. 37.
    Yang J, Liu XM, Li CX, Quan ZW, Kong DY, Lin J (2007) J Cryst Growth 303:480CrossRefGoogle Scholar
  38. 38.
    Yang Y, Chu Y, Zhang Y, Yang F (2006) J Solid State Chem 179:470CrossRefGoogle Scholar
  39. 39.
    Zhang YP, Chu Y, Yang Y (2007) Colloid Polym Sci 285:1061CrossRefGoogle Scholar
  40. 40.
    Paine A, Luymes W, McNulty J (1990) Macromolecules 23:3104CrossRefGoogle Scholar
  41. 41.
    Yang Y, Chu Y, Yang F, Zhang Y (2005) Mater Chem Phys 92:164CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Y. Y. Zhang
    • 1
  • J. L. Liu
    • 1
  • Y. X. Zhu
    • 1
  • Y. Shang
    • 1
  • M. Yu
    • 1
    Email author
  • X. Huang
    • 1
  1. 1.College of ChemistryNortheast Normal UniversityChangchunPeople’s Republic of China

Personalised recommendations