Journal of Materials Science

, Volume 44, Issue 12, pp 3241–3247 | Cite as

Synergistic effects in network formation and electrical properties of hybrid epoxy nanocomposites containing multi-wall carbon nanotubes and carbon black

  • Jan SumflethEmail author
  • Xavier Cordobes Adroher
  • Karl Schulte


Epoxy nanocomposites including multi-wall carbon nanotubes (MWCNT) and carbon black (CB) were produced and investigated by means of electrical conductivity measurements and microscopical analysis. Varying the weight fraction of the nanoparticles, electrical percolation behaviour was studied. Due to synergistic effects in network formation and in charge transport the inclusion of both MWCNT and CB in the epoxy matrix leads to an identical electrical behaviour of this ternary nanocomposite system compared to the binary MWCNT-epoxy system. For both types of nanocomposites an electrical percolation threshold of around 0.025 wt% and 0.03 wt% was observed. Conversely, the binary CB nanocomposites exhibit a three-times higher percolation threshold of about 0.085 wt%. The difference between the binary MWCNT-epoxy and the ternary CB/MWCNT-epoxy in electrical conductivity at high filler concentrations (e.g. 0.5 wt%) turns out to be less than expected. Thus, a considerable amount of MWCNTs can be replaced by CB without changing the electrical properties.


Carbon Black Ternary System Percolation Threshold Filler Content Conductive Filler 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The German Research Foundation (Deutsche Forschungsgemeinschaft) and its graduate school “Kunst und Technik” at the Technische Universität Hamburg-Harburg is gratefully acknowledged for financial support (DFG GRK 1006/1). The companies Degussa-Evonik® and Arkema® are acknowledged for the supply of the nanoparticles.


  1. 1.
    Thostenson ET, Li CY, Chou TW (2005) Compos Sci Technol 65:491CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Winey KI, Kashiwagi T, Mu M (2007) MRS Bull 32:348CrossRefGoogle Scholar
  4. 4.
    Ezquerra TA, Kulescza M, Baltá-Calleja FJ (1991) Synth Met 41:915CrossRefGoogle Scholar
  5. 5.
    Prasse T, Flandin L, Schulte K, Bauhofer W (1998) Appl Phys Lett 72:2903CrossRefGoogle Scholar
  6. 6.
    Flandin L, Prasse T, Schueler R, Schulte K, Bauhofer W, Cavaille J-Y (1999) Phys Rev B 59:14349CrossRefGoogle Scholar
  7. 7.
    Ezquerra TA, Connor MT, Roy S, Kulescza M, Fernandes-Nascimento J, Baltá-Calleja FJ (2001) Compos Sci Technol 61:903CrossRefGoogle Scholar
  8. 8.
    Davis WR, Slawson RJ, Rigby GR (1953) Nature 171:756CrossRefGoogle Scholar
  9. 9.
    Oberlin A, Endo M, Koyama T (1976) J Cryst Growth 32:335CrossRefGoogle Scholar
  10. 10.
    Iijima S (1991) Nature 354:56CrossRefGoogle Scholar
  11. 11.
    Bauhofer W, Kovacs JZ (2008) Compos Sci Technol (in press, corrected proof)Google Scholar
  12. 12.
    Kovacs JZ, Velagala BS, Schulte K, Bauhofer W (2007) Compos Sci Technol 67:922CrossRefGoogle Scholar
  13. 13.
    Du FM, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Macromolecules 37:9048CrossRefGoogle Scholar
  14. 14.
    Bryning MB, Islam MF, Kikkawa JM, Yodh AG (2005) Adv Mater 17:1186CrossRefGoogle Scholar
  15. 15.
    Gojny FH, Wichmann MHG, Fiedler B, Kinloch IA, Bauhofer W, Windle AH, Schulte K (2006) Polymer 47:2036CrossRefGoogle Scholar
  16. 16.
    Hu N, Masuda Z, Yan C, Yamamoto G, Fukunaga H, Hashida T (2008) Nanotechnology 19:215701CrossRefGoogle Scholar
  17. 17.
    Kodgire PV, Bhattacharyya AR, Bose S, Gupta N, Kulkarni AR, Misra A (2006) Chem Phys Lett 432:480CrossRefGoogle Scholar
  18. 18.
    Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Polymer 44:5893CrossRefGoogle Scholar
  19. 19.
    Martin CA, Sandler JKW, Shaffer MSP, Schwarz MK, Bauhofer W, Schulte K, Windle AH (2004) Compos Sci Technol 64:2309CrossRefGoogle Scholar
  20. 20.
    Martin CA, Sandler JKW, Windle AH, Schwarz MK, Bauhofer W, Schulte K, Shaffer MSP (2005) Polymer 46:877CrossRefGoogle Scholar
  21. 21.
    Moisala A, Li Q, Kinloch IA, Windle AH (2006) Compos Sci Technol 66:1285CrossRefGoogle Scholar
  22. 22.
    Tjong SC, Liang GD, Bao SP (2007) Scr Mater 57:461CrossRefGoogle Scholar
  23. 23.
    Pötschke P, Abdel-Goad M, Alig I, Dudkin S, Lellinger D (2004) Polymer 45:8863CrossRefGoogle Scholar
  24. 24.
    Konishi Y, Cakmak A (2006) Polymer 47:5371CrossRefGoogle Scholar
  25. 25.
    Liu L, Grunlan JC (2007) Adv Funct Mater 2007:2343CrossRefGoogle Scholar
  26. 26.
    Kotaki M, Wang K, Toh ML, Chen L, Wong SY, He CB (2006) Macromolecules 39:908CrossRefGoogle Scholar
  27. 27.
    Zhang W, Blackburn RS, Dehghani-Sanij AA (2007) Scr Mater 56:581CrossRefGoogle Scholar
  28. 28.
    Li J, Wong P, Kim JK (2008) Mater Sci Eng A 483:660CrossRefGoogle Scholar
  29. 29.
    Sumfleth J, Almeida Prado LAS, de Sriyai M, Schulte K (2008) Polymer 49:5105CrossRefGoogle Scholar
  30. 30.
    Bokobza L, Rahmani M, Belin C, Bruneel JL, El Bounia N (2008) J Polym Sci B Polym Phys 46:1939CrossRefGoogle Scholar
  31. 31.
    Sun Y, Bao H, Guo Z, Yu J (2009) Macromolecules 42:459CrossRefGoogle Scholar
  32. 32.
    Gojny FH, Wichmann MHG, Kopke U, Fiedler B, Schulte K (2004) Compos Sci Technol 64:2363CrossRefGoogle Scholar
  33. 33.
    Gojny FH, Wichmann MHG, Fiedler B, Schulte K (2005) Compos Sci Technol 65:2300CrossRefGoogle Scholar
  34. 34.
    Wichmann MHG, Sumfleth J, Fiedler B, Gojny FH, Schulte K (2006) Mech Compos Mater 42:395CrossRefGoogle Scholar
  35. 35.
    Stauffer D, Aharony A (1992) Introduction to percolation theory. Taylor & Francis, LondonGoogle Scholar
  36. 36.
    Kilbride BE, Coleman JN, Fraysse J, Fournet P, Cadek M, Drury A, Hutzler S, Roth S, Blau WJ (2002) J Appl Phys 92:4024CrossRefGoogle Scholar
  37. 37.
    Prasse T, Schwarz MK, Schulte K, Bauhofer W (2001) Colloid Surf A 189:183CrossRefGoogle Scholar
  38. 38.
    Balberg I, Anderson CH, Alexander S, Wagner N (1984) Phys Rev B 30:3933CrossRefGoogle Scholar
  39. 39.
    Sumfleth J, Prado LASA, Richau S, Sriyai M, Schulte K (2009) Solid State Phenom 151:176CrossRefGoogle Scholar
  40. 40.
    Sheng P, Sichel EK, Gittleman JI (1978) Phys Rev Lett 40:1197CrossRefGoogle Scholar
  41. 41.
    Li C, Thostenson ET, Chou TW (2007) Appl Phys Lett 91:223114CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jan Sumfleth
    • 1
    Email author
  • Xavier Cordobes Adroher
    • 1
  • Karl Schulte
    • 1
  1. 1.Institute of Polymers and CompositesTechnische Universität Hamburg-HarburgHamburgGermany

Personalised recommendations