Advertisement

Journal of Materials Science

, Volume 44, Issue 12, pp 3235–3240 | Cite as

Structural and electronic properties of tellurite glasses

  • Simona RadaEmail author
  • Eugen Culea
  • Marius Rada
  • Petru Pascuta
  • Vistrian Maties
Article

Abstract

The structural properties of some tellurite glasses were investigated by FT-IR spectroscopy, density measurements, and quantum chemical calculations. Main results reveal that the ratio TeO4/TeO3 is found to decrease in the order V2O5 > B2O3 > P2O5. For borate–tellurate glasses, the Van Hove singularities corresponding to Te 5s orbital-derived states are cleft suggesting that there are strong tellurium–oxygen interactions. On the other hand, a strong effect of TeO2 on the vitreous B2O3 network is also demonstrated by FT-IR spectrum. This effect yields the apparition of small peaks in the region ranges between 800 and 1600 cm−1 and probably the partial crystallization of the sample. Its spectral features are due to the B–O bond stretching of [BO4] and [BO3] structural units. The quantum chemical data obtained by us show that phosphate–tellurite and vanado–tellurate glasses can behave as semiconductors, whereas borate–tellurite glasses as insulators because the gap between the valence and conduction bands is >3 eV.

Keywords

B2O3 Tellurium TeO2 Phosphate Glass Tellurite Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    West AR (1984) Solid state chemistry and its applications. Wiley, New York, p 592Google Scholar
  2. 2.
    He Y, Day DE (1992) Glass Technol 33:214Google Scholar
  3. 3.
    Sidek HAA, Collier IT, Hampton RN, Saunders GA, Bridge B (1989) Philos Mag 59B:221CrossRefGoogle Scholar
  4. 4.
    Yung H, Shih PY, Liu HS (1997) J Am Ceram Soc 80:2213CrossRefGoogle Scholar
  5. 5.
    Rada S, Culea E, Culea M (2008) J Mater Sci 43(19):6480. doi: https://doi.org/10.1007/s10853-008-2980-8 CrossRefGoogle Scholar
  6. 6.
    Rada S, Culea E, Rus V, Pica M, Culea M (2008) J Mater Sci 43(10):3713. doi: https://doi.org/10.1007/s10853-008-2601-6 CrossRefGoogle Scholar
  7. 7.
    Gaman VI, Peznikov VA, Fedyainova NI, Vyssh UZV (1972) Zaved Fiz 2:57Google Scholar
  8. 8.
    Sidkey MA, El Mallawany R, Nakhla RI, Abd El-Moneim A (1997) J Non-Cryst Solids 215:75CrossRefGoogle Scholar
  9. 9.
    Spartan’04 Software, Wavefunction Inc., Irvine, CAGoogle Scholar
  10. 10.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Rega N, Salvador P, Dannenberg JJ, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challocombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzales C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98 Rev A.5 Programme. Gaussian Inc., Pittsburgh, PAGoogle Scholar
  11. 11.
    Brandle M, Rytz R, Calzaferri G (1997) BICON-CEDIT Software. University of Bern, SwitzerlandGoogle Scholar
  12. 12.
    Ganguli M, Rao KJ (1999) J Solid State Chem 145:65CrossRefGoogle Scholar
  13. 13.
    Shaltout I, Tang Y, Braunstein R, Abu-Elazm AM (1995) J Phys Chem Solids 56:141CrossRefGoogle Scholar
  14. 14.
    Mendialdua J, Casanova R, Barbaux Y (1995) J Electron Spectrosc Relat Phenom 71:249CrossRefGoogle Scholar
  15. 15.
    Miyata H, Fujii K, Ono T, Kubokawa Y, Ohno T, Hatayama F (1987) J Chem Soc Faraday Trans 83:675CrossRefGoogle Scholar
  16. 16.
    Dimitrov V (1987) J Solid State Chem 66:256CrossRefGoogle Scholar
  17. 17.
    Khattak GD, Tabet N, Wenger LE (2005) Phys Rev 72B:104203CrossRefGoogle Scholar
  18. 18.
    de Waal D, Hutter C (1994) Mater Res Bull 29:843CrossRefGoogle Scholar
  19. 19.
    Manara D, Grandjean A, Pinet O, Dussossoy JL, Neuville DR (2007) J Non-Cryst Solids 353:12CrossRefGoogle Scholar
  20. 20.
    Anderson GW, Compton WD (1970) J Chem Phys 52:6166CrossRefGoogle Scholar
  21. 21.
    Janakirama Rao BHV (1965) J Am Ceram Soc 48:311CrossRefGoogle Scholar
  22. 22.
    Efimov AM (1997) J Non-Cryst Solids 209:209CrossRefGoogle Scholar
  23. 23.
    Rada S, Culea M, Culea E (2008) J Phys Chem A 112(44):11251CrossRefGoogle Scholar
  24. 24.
    Doweidar H, Mostafa YM, El-Egili K, Abbass I (2005) Vib Spectrosc 37:91CrossRefGoogle Scholar
  25. 25.
    Shin PY, Yung SW, Chin JS (1999) J Non-Cryst Solids 249:1CrossRefGoogle Scholar
  26. 26.
    Abid M, Et-labirou M, Taibi M (2003) Mater Sci Eng 97B:20CrossRefGoogle Scholar
  27. 27.
    Sabadel JC, Armand P, Cachau-Herreillat D, Baldeck P, Doclot O, Ibanez A, Philippot E (1997) J Solid State Chem 132:411CrossRefGoogle Scholar
  28. 28.
    Fargin E, Berthereau A, Cardinal T, Le Flem G, Ducase L, Canioni L, Segonds P, Sarger L, Ducasse A (1996) J Non-Cryst Solids 203:96CrossRefGoogle Scholar
  29. 29.
    Dwivedi BP, Rahman MH, Kumar Y, Khanna BN (1993) J Phys Chem Solids 54:621CrossRefGoogle Scholar
  30. 30.
    Pascuta P, Pop L, Rada S, Bosca M, Culea E (2008) J Mater Sci Mater Electron 19(5):424CrossRefGoogle Scholar
  31. 31.
    Rada S, Culea M, Neumann M, Culea E (2008) Chem Phys Lett 460(1–3):196CrossRefGoogle Scholar
  32. 32.
    Himei Y, Osaka A, Nanba T, Miura Y (1994) J Non-Cryst Solids 177:164CrossRefGoogle Scholar
  33. 33.
    Rada S, Pascuta P, Bosca M, Culea M, Pop L, Culea E (2008) Vib Spectrosc 48(2):255CrossRefGoogle Scholar
  34. 34.
    Rada S, Culea E, Rus V (2008) J Mater Sci 43(18):6094. doi: https://doi.org/10.1007/s10853-008-2949-7 CrossRefGoogle Scholar
  35. 35.
    Greenham NC, Friend RH (1995) In: Ehrenreich H, Spaepen F (eds) Advances in research and application, vol 49. Academic Press, New York, p 1Google Scholar
  36. 36.
    Rada S, Culea E, Bosca M, Culea M, Muntean R, Pascuta P (2008) Vib Spectrosc 48(2):285CrossRefGoogle Scholar
  37. 37.
    Rada S, Culea M, Culea E (2008) J Non-Cryst Solids 354(52–54):5491CrossRefGoogle Scholar
  38. 38.
    Cappelutti E, Pietronero L (1996) Europhys Chem 36:619Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Simona Rada
    • 1
    Email author
  • Eugen Culea
    • 1
  • Marius Rada
    • 2
  • Petru Pascuta
    • 1
  • Vistrian Maties
    • 2
  1. 1.Department of PhysicsTechnical University of Cluj-NapocaCluj-NapocaRomania
  2. 2.Department of MechatronicTechnical University of Cluj-NapocaCluj-NapocaRomania

Personalised recommendations