Advertisement

Journal of Materials Science

, Volume 44, Issue 12, pp 3223–3228 | Cite as

Microstructures and properties of Bi3.25La0.75Ti2.94V0.06O12 ferroelectric thin film deposited by sol–gel method

  • Jianjun LiEmail author
  • Jun Yu
  • Jia Li
  • Bin Zhou
  • Guangxing Zhou
  • Yubin Li
  • Junxiong Gao
  • Yunbo Wang
Article

Abstract

Bi3.25La0.75Ti2.94V0.06O12 (BLTV) thin film was fabricated on the Pt/TiO2/SiO2/p-Si(100) substrate using sol–gel method. The microstructures and electrical properties of the film after cosubstitution of La and V were investigated. The BLTV thin film shows less highly c-axis oriented than the BIT thin film mainly with fine rod-like grains. Raman spectroscopy shows that TiO6 (or VO6) symmetry decreases and Ti–O (or V–O) hybridization increases for V substitution. The Pr and Ec values of the BLTV thin film are 26.3 μC/cm2 and 98 kV/cm at a voltage of 12 V, respectively. The thin film also exhibits a very strong fatigue endurance up to 1010 cycles and low leakage current density. The excellent properties of the BLTV thin film are attributed to the effective decrease or suppression of oxygen vacancies after La and V cosubstitution in the thin film.

Keywords

Oxygen Vacancy Leakage Current Density Ferroelectric Thin Film Bismuth Titanate Lanthanum Nitrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work is supported by the Key program of National Nature Science Foundation of China, Nos. 90407023 and 60571009. The authors gratefully acknowledge technical assistance from Analytical and Testing Center of Huazhong University of Science and Technology, China.

References

  1. 1.
    Scott JF, Araujo CA (1989) Science 246:1400CrossRefGoogle Scholar
  2. 2.
    Haertling GH (1999) J Am Ceram Soc 82:797CrossRefGoogle Scholar
  3. 3.
    Takenaka T, Sanaka K (1980) Jpn J Appl Phys 19:31CrossRefGoogle Scholar
  4. 4.
    Ramesh R, Luther K, Wilkens B, Hart DL, Wang E, Trascon JM (1990) Appl Phys Lett 57:1505CrossRefGoogle Scholar
  5. 5.
    Simoes AZ, Pianno RFC, Ries A, Varela JA, Longo E (2006) J Appl Phys 100:084106CrossRefGoogle Scholar
  6. 6.
    Fuierer P, Li B (2002) J Am Ceram Soc 85:299CrossRefGoogle Scholar
  7. 7.
    Park BH, Kang BS, Bu SD, Noh TW, Lee J, Jo W (1999) Nature 401:682CrossRefGoogle Scholar
  8. 8.
    Chon U, Jang HM, Kim MG, Chang CH (2002) Phys Rev Lett 89:087601CrossRefGoogle Scholar
  9. 9.
    Watanabe T, Funakubo H, Osada M, Uchida H, Okada I (2005) J Appl Phys 98:024110CrossRefGoogle Scholar
  10. 10.
    Chon U, Shim JS, Jang HM (2003) J Appl Phys 93:4769CrossRefGoogle Scholar
  11. 11.
    Chen M, Liu ZL, Wang Y, Wang CC, Yang XS, Yao KL (2004) Phys B 352:61CrossRefGoogle Scholar
  12. 12.
    Kim SS, Song TK, Kim JK, Kim J (2002) J Appl Phys 92:2213CrossRefGoogle Scholar
  13. 13.
    Kim JK, Kim J, Song TK, Kim SS (2002) Thin Solid Films 419:225CrossRefGoogle Scholar
  14. 14.
    Lin WT, Chiu TW, Yu HH, Lin JL, Lin MS (2003) J Vac Sci Technol A 21:787CrossRefGoogle Scholar
  15. 15.
    Lotgering FK (1959) J Inorg Nucl Chem 9:113CrossRefGoogle Scholar
  16. 16.
    Lu CJ, Qiao Y, Qi YJ, Chen XQ, ZHU JS (2005) Appl Phys Lett 87:222901CrossRefGoogle Scholar
  17. 17.
    Yau CY, Palan R, Tran K, Buchanan RC (2005) Appl Phys Lett 86:032907CrossRefGoogle Scholar
  18. 18.
    Choi EK, Kim SS, Kim JK, Bae JC, Kim WJ, Lee YI, Song TK (2004) Jpn J Appl Phys 43:237CrossRefGoogle Scholar
  19. 19.
    Shulman HS, Damjanovic D, Setter N (2000) J Am Ceram Soc 83:528CrossRefGoogle Scholar
  20. 20.
    Li W, Yin Y, Su D, Zhu JS (2005) J Appl Phys 97:084102CrossRefGoogle Scholar
  21. 21.
    Chen SY, Lan BC, Taso CS (2002) J Appl Phys 91:10032CrossRefGoogle Scholar
  22. 22.
    Mao XY, He JH, Zhu J, Chen XB (2006) J Appl Phys 100:044104CrossRefGoogle Scholar
  23. 23.
    Li J, Yu J, Peng G, Wang YB, Zhou WL (2007) J Phys D Appl Phys 40:3788CrossRefGoogle Scholar
  24. 24.
    Cohen RE (1992) Nature 358:136CrossRefGoogle Scholar
  25. 25.
    Araujo CA, Mcmillan LD, Melnick BM, Cuchiaro JD, Scott JF (1990) Ferroelectrics 104:241CrossRefGoogle Scholar
  26. 26.
    Chu MW, Ganne M, Caldes MT, Gautier E, Brohan L (2003) Phys Rev B 68:014102CrossRefGoogle Scholar
  27. 27.
    Park CH, Chadi DJ (1998) Phys Rev B 57:R13961Google Scholar
  28. 28.
    Kang BS, Park BH, Bu SD, Kang SH, Noh TW (1999) Appl Phys Lett 75:2644CrossRefGoogle Scholar
  29. 29.
    Sun H, Zhu J, Fang H, Chen XB (2006) J Appl Phys 100:074102CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jianjun Li
    • 1
    Email author
  • Jun Yu
    • 1
  • Jia Li
    • 1
  • Bin Zhou
    • 1
  • Guangxing Zhou
    • 1
  • Yubin Li
    • 1
  • Junxiong Gao
    • 1
  • Yunbo Wang
    • 1
  1. 1.Department of Electronic Science and TechnologyHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations