Preparation and properties of alternating 2,7-linked carbazole copolymers with phenylene units with varying number of fluorine substituents
- 159 Downloads
- 2 Citations
Abstract
New alternating copolymers comprising 2,7-linked-3,6-dimethyl-9-(2-hexyldecy)-9H-carbazole and 1,4-phenylene units (P1), 2,5-difluoro-1,4-phenylene units (P2), and 2,3,5,6-tetrafluoro-1,4-phenylene units (P3) have been prepared using Suzuki cross-coupling conditions. The polymers were characterized by NMR spectroscopy, UV–vis absorption spectroscopy, fluorescence spectroscopy, and their weight-average molecular weights were estimated using gel permeation chromatography. The polymers are thermally stable up to 420 °C and display wide band gaps ranging from 3.16 to 3.2 eV. The polymers are electrolytically stable and emit around 400 nm. A discussion on the effect of the varying degree of fluorine substitution of the phenylene repeat units in polymers P1–P3 on their physical properties is presented.
Keywords
Repeat Unit Carbazole Phenylboronic Acid Aromatic Region Tetrabutylammonium PerchlorateNotes
Acknowledgement
We would like to acknowledge EPSRC (Grant number GR/S56719/01) for financial support of this work.
References
- 1.Virgili T, Lidzey DG, Bradley DDC (2000) Adv Mater 12:58CrossRefGoogle Scholar
- 2.Liang B, Jiang C, Chen Z, Zhang X, Shi H, Cao Y (2006) J Mater Chem 16:1281CrossRefGoogle Scholar
- 3.Zhang X, Chen Z, Yang C, Li Z, Zhang K, Yao H, Qin J, Chen J, Cao Y (2006) Chem Phys Lett 422:386CrossRefGoogle Scholar
- 4.Cleave V, Yahioglu G, Le Barny P, Hwang D-H, Holmes AB, Friend RH, Tessler N (2001) Adv Mater 13:44CrossRefGoogle Scholar
- 5.O’Brien DF, Giebeler C, Fletcher RB, Cadby AJ, Palilis LC, Lidzey DG, Lane PA, Bradley DDC, Blau W (2001) Synth Met 116:379CrossRefGoogle Scholar
- 6.Guo T-F, Chang S-C, Yang Y, Kwong RC, Thompson ME (2000) Org Electron 1:15CrossRefGoogle Scholar
- 7.Jiang C, Yang W, Peng J, Xiao S, Cao Y (2004) Adv Mater 16:537CrossRefGoogle Scholar
- 8.Hong H, Sfez R, Yitzchaik S, Davidov D (1999) Synth Met 102:1217CrossRefGoogle Scholar
- 9.Lamansky S, Kwong RC, Nugent M, Djurovich PI, Thompson ME (2001) Org Electron 2:53CrossRefGoogle Scholar
- 10.Zeng G, Yu W-L, Chua S-J, Huang W (2002) Macromolecules 35:6907CrossRefGoogle Scholar
- 11.List EJW, Guentner R, de Scanducci de FP, Scherf U (2002) Adv Mater 14:374CrossRefGoogle Scholar
- 12.Becker K, Lupton JM, Feldmann J, Nehls BS, Galbrecht F, Gao D, Scherf U (2006) Adv Funct Mater 16:364CrossRefGoogle Scholar
- 13.Zotti G, Schiavon G, Zecchin S, Morin J-F, Leclerc M (2002) Macromolecules 35:2122CrossRefGoogle Scholar
- 14.Iraqi A, Wataru I (2004) Chem Mater 16:442CrossRefGoogle Scholar
- 15.Yi H, Iraqi A, Stevenson M, Elliott CJ, Lidzey DG (2007) Macromol Rapid Commun 28:1155CrossRefGoogle Scholar
- 16.Iraqi A, Pickup DF, Yi H (2006) Chem Mater 18:1007CrossRefGoogle Scholar
- 17.Krebs FC, Jorgensen M (2003) Polym Bull 51:127CrossRefGoogle Scholar
- 18.Crouch DJ, Skabara PJ, Lohr JE, McDouall JJW, Heeney M, McCulloch I, Sparrowe D, Shkunov M, Coles SJ, Horton PN, Hursthouse MB (2005) Chem Mater 17:6567CrossRefGoogle Scholar
- 19.Assaka AM, Rodrigues PC, De Oliveira ARM, Ding L, Hu B, Karasz FE, Akcelrud L (2004) Polymer 45:7071CrossRefGoogle Scholar
- 20.Kameshima H, Nemoto N, Endo T (2001) J Polym Sci Part A: Polym Chem 39:3143CrossRefGoogle Scholar
- 21.Gritzner G (1990) Pure Appl Chem 62:1839CrossRefGoogle Scholar
- 22.Iraqi A, Wataru I (2004) J Polym Sci Part A: Polym Chem 42:6041CrossRefGoogle Scholar
- 23.Kulasi A, Yi H, Iraqi A (2007) J Polym Sci Part A: Polym Chem 45:5957CrossRefGoogle Scholar
- 24.Pommerehne J, Vestweber H, Guss W, Mahrt RF, Bässler H, Porsch M, Daub J (1995) Adv Mater 7:551CrossRefGoogle Scholar
- 25.Janietz S, Bradley DDC, Grell M, Giebeler C, Inbasekaran M, Woo EP (1998) Appl Phys Lett 73:2453CrossRefGoogle Scholar