Polyurethane foam containing microencapsulated phase-change materials with styrene–divinybenzene co-polymer shells
- 825 Downloads
- 60 Citations
Abstract
Polyurethane (PU) foam containing phase change materials is a kind of new heat-insulating material which can store and release heat energy. The microencapsulated n-octadecane (MicroPCMs) with a styrene (St)–divinybenzene (DVB) co-polymer shell was synthesized by means of suspension-like polymerization. The surface morphology, diameter, enthalpy, and thermal stability were investigated by using scanning electronic microscope (SEM), differential scanning calorimeter (DSC), and TGA. The average diameter of the microcapsules is about 80 μm. The enthalpy of the microcapsule is about 126 J/g. PU foams containing MicroPCMs were fabricated by adding the MicroPCMs in reactants. MicroPCMs are evenly inserted inside the foam and the enthalpy of the foam rises with the increase of the content of microcapsules. The enthalpy is about 24 J/g for the foam containing 26.8 wt% MicroPCMs.
Keywords
Foam Differential Scanning Calorimeter Melamine Discontinuous Phase Dibutyltin DilaurateNotes
Acknowledgements
The authors are thankful to the National Natural Science Found of China (No. 50573058) and Specialized Research Found for the Doctoral Program of Higher Education (No.20050058004) for the financial supports.
References
- 1.Benita S (1996) Microencapsulation: methods and industrial applications. Marcel Dekker Inc, New York, p 1Google Scholar
- 2.Chaurasia PBL (1981) Res Ind 26:159Google Scholar
- 3.Johnson CH, Eichelberger JL (1985) US Patent 4,505,953Google Scholar
- 4.Hittle DC, André TL (2002) ASHRAS Trans Res 180:175Google Scholar
- 5.Zhang XX, Wang XC, Tao XM, Yick KL (2005) J Mater Sci 40:3729. doi: https://doi.org/10.1007/s10853-005-3314-8 CrossRefGoogle Scholar
- 6.Zhang XX, Tao XM, Yick KL, Wang XC (2006) Textile Res J 76:351CrossRefGoogle Scholar
- 7.Kim J, Cho G (2002) Textile Res J 72:1093CrossRefGoogle Scholar
- 8.Zhang XX, Li Y, Tao XM, Yick KL (2005) Indian J Fiber Textile Res 30:377Google Scholar
- 9.Bryant YG, Colvin DP (1996) US Patent 5,499,460Google Scholar
- 10.Nuckols ML (1999) Ocean Eng 26:547CrossRefGoogle Scholar
- 11.Pause B (1999) Med Text September: 23Google Scholar
- 12.You M, Wang XC, Jiang BN, Zhang XX (2007) New Chem Mater 35:53Google Scholar
- 13.You M, Zhang XX, Li W, Wang XC (2008) Thermochim Acta 472:20CrossRefGoogle Scholar
- 14.Qian WJ, Chen HM, Xiong YQ (2005) J Hunan Univ (Nat Sci Ed) 32:69Google Scholar
- 15.Zhang XX, Fan YF, Tao XM, Yick KL (2004) Mater Chem Phys 88:300CrossRefGoogle Scholar
- 16.Sánchez L, Sánchez P, Carmona M (2008) Colloid Polym Sci 286:1435CrossRefGoogle Scholar
- 17.Zhang XX, Tao XM, Yick KL, Fan YF (2005) J Appl Polym Sci 97:390CrossRefGoogle Scholar
- 18.Yamagishi Y, Sugeno T, Ishige T (1996) IEEE 96082 2077Google Scholar
- 19.Zhang XX, Tao XM, Yick KL, Wang XC (2004) Colloid Polym Sci 282:330CrossRefGoogle Scholar
- 20.Fan YF, Zhang XX, Wu SZ, Wang XC (2005) Thermochim Acta 429:25CrossRefGoogle Scholar
- 21.Wu RD, Tong XL, Zhang JK, Liu GB (2005) China Elastomerics 15:5Google Scholar
- 22.Wang X, Ge HY (2004) China Plast Ind 32:20Google Scholar